Cargando…

Comprehensive analysis of transcriptome and metabolome provides insights into the stress response mechanisms of apple fruit to postharvest impact damage

An integrated analysis of the transcriptome and metabolome was conducted to investigate the underlying mechanisms of apple fruit response to impact damage stress. During the post-damage storage, a total of 124 differentially expressed genes (DEGs) were identified, which were mainly annotated in 13 p...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zhichao, Lin, Menghua, Yang, Xiangzheng, Wu, Di, Chen, Kunsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344661/
https://www.ncbi.nlm.nih.gov/pubmed/37457816
http://dx.doi.org/10.1016/j.fochms.2023.100176
Descripción
Sumario:An integrated analysis of the transcriptome and metabolome was conducted to investigate the underlying mechanisms of apple fruit response to impact damage stress. During the post-damage storage, a total of 124 differentially expressed genes (DEGs) were identified, which were mainly annotated in 13 pathways, including phenylpropanoid biosynthesis. Besides, 175 differentially expressed metabolites (DEMs), including 142 up-regulated and 33 down-regulated metabolites, exhibited significant alteration after impact damage. The DEGs and DEMs were simultaneously annotated in 7 metabolic pathways, including flavonoid biosynthesis. Key genes in the volatile esters and flavonoid biosynthesis pathways were revealed, which may play a crucial role in the coping mechanisms of apple fruit under impact damage stress. Moreover, 13 ABC transporters were significantly upregulated, indicating that ABC transporters may contribute to the transportation of secondary metabolites associated with response to impact damage stress. The results may elucidate the comprehension of metabolic networks and molecular mechanisms in apple fruits that have undergone impact damage.