Cargando…
Benchmarking Automated Machine Learning-Enhanced Planning With Ethos Against Manual and Knowledge-Based Planning for Locally Advanced Lung Cancer
PURPOSE: Currently, there is insufficient guidance for standard fractionation lung planning using the Varian Ethos adaptive treatment planning system and its unique intelligent optimization engine. Here, we address this gap in knowledge by developing a methodology to automatically generate high-qual...
Autores principales: | Pogue, Joel A., Cardenas, Carlos E., Harms, Joseph, Soike, Michael H., Kole, Adam J., Schneider, Craig S., Veale, Christopher, Popple, Richard, Belliveau, Jean-Guy, McDonald, Andrew M., Stanley, Dennis N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344691/ https://www.ncbi.nlm.nih.gov/pubmed/37457825 http://dx.doi.org/10.1016/j.adro.2023.101292 |
Ejemplares similares
-
Do we need patient‐specific QA for adaptively generated plans? Retrospective evaluation of delivered online adaptive treatment plans on Varian Ethos
por: Zhao, Xiaodong, et al.
Publicado: (2022) -
Leveraging intelligent optimization for automated, cardiac-sparing accelerated partial breast treatment planning
por: Pogue, Joel A., et al.
Publicado: (2023) -
Automated evaluation for rapid implementation of knowledge‐based radiotherapy planning models
por: Harms, Joseph, et al.
Publicado: (2023) -
Assessment of efficacy in automated plan generation for Varian Ethos intelligent optimization engine
por: Pokharel, Shyam, et al.
Publicado: (2022) -
A roadmap for implementation of kV‐CBCT online adaptive radiation therapy and initial first year experiences
por: Stanley, Dennis N., et al.
Publicado: (2023)