Cargando…
Exploring machine learning algorithms for accurate water level forecasting in Muda river, Malaysia
Accurate water level prediction for both lake and river is essential for flood warning and freshwater resource management. In this study, three machine learning algorithms: multi-layer perceptron neural network (MLP-NN), long short-term memory neural network (LSTM) and extreme gradient boosting XGBo...
Autores principales: | Adli Zakaria, Muhamad Nur, Ahmed, Ali Najah, Abdul Malek, Marlinda, Birima, Ahmed H., Hayet Khan, Md Munir, Sherif, Mohsen, Elshafie, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344711/ https://www.ncbi.nlm.nih.gov/pubmed/37456046 http://dx.doi.org/10.1016/j.heliyon.2023.e17689 |
Ejemplares similares
-
Rainfall-runoff modelling based on global climate model and tropical rainfall measuring mission (GCM -TRMM): A case study in Hulu Terengganu catchment, Malaysia
por: Che Wan Zanial, Wan Norsyuhada, et al.
Publicado: (2023) -
Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia
por: Hanoon, Marwah Sattar, et al.
Publicado: (2021) -
Study of Heavy Metal Levels among Farmers of Muda Agricultural Development Authority, Malaysia
por: Ghazali, Ahmad Rohi, et al.
Publicado: (2012) -
Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting
por: Afan, Haitham Abdulmohsin, et al.
Publicado: (2020) -
PM2.5 forecasting for an urban area based on deep learning and decomposition method
por: Zaini, Nur’atiah, et al.
Publicado: (2022)