Cargando…
Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers
Ultra-high performance concrete (UHPC) provides exceptional mechanical and durability properties, but it is highly prone to cracking. Despite short steel fibers have been introduced to UHPC mixtures to mitigate brittleness and improve ductility, its effect on the tensile strength and fracture toughn...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344753/ https://www.ncbi.nlm.nih.gov/pubmed/37456004 http://dx.doi.org/10.1016/j.heliyon.2023.e17926 |
_version_ | 1785072929126481920 |
---|---|
author | Muhyaddin, Guler Fakhraddin |
author_facet | Muhyaddin, Guler Fakhraddin |
author_sort | Muhyaddin, Guler Fakhraddin |
collection | PubMed |
description | Ultra-high performance concrete (UHPC) provides exceptional mechanical and durability properties, but it is highly prone to cracking. Despite short steel fibers have been introduced to UHPC mixtures to mitigate brittleness and improve ductility, its effect on the tensile strength and fracture toughness becomes rather limited. This experimental study addresses hybridization of micro steel and glass fibers, and long hooked steel fibers to improve mechanical and fracture properties of ultra-high-performance concretes (UHPCs). Totally, 22 concrete mixtures were cast using mono and binary combinations of micro steel fiber (MSF), long hooked steel fiber (HSF) and micro glass fiber (GF) at 0, 0.25, 0.50, 0.75, 1.0, 1.5, and 2% by total fiber volume. The UHPCs were tested for compression, splitting, flexure, load-deflection diagram, fracture toughness, and characteristic length. Combined use of fibers suggested the performance order of MSF + HSF, MSF + GF, and HSF + GF on the effects tested. Using hooked steel fibers (HSF) in the hybrid blends seems remarkably promising as it has provided much higher ductility and discernible strain hardening. Using mono-GF did not improve ductility, even showed brittle failure. |
format | Online Article Text |
id | pubmed-10344753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103447532023-07-15 Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers Muhyaddin, Guler Fakhraddin Heliyon Research Article Ultra-high performance concrete (UHPC) provides exceptional mechanical and durability properties, but it is highly prone to cracking. Despite short steel fibers have been introduced to UHPC mixtures to mitigate brittleness and improve ductility, its effect on the tensile strength and fracture toughness becomes rather limited. This experimental study addresses hybridization of micro steel and glass fibers, and long hooked steel fibers to improve mechanical and fracture properties of ultra-high-performance concretes (UHPCs). Totally, 22 concrete mixtures were cast using mono and binary combinations of micro steel fiber (MSF), long hooked steel fiber (HSF) and micro glass fiber (GF) at 0, 0.25, 0.50, 0.75, 1.0, 1.5, and 2% by total fiber volume. The UHPCs were tested for compression, splitting, flexure, load-deflection diagram, fracture toughness, and characteristic length. Combined use of fibers suggested the performance order of MSF + HSF, MSF + GF, and HSF + GF on the effects tested. Using hooked steel fibers (HSF) in the hybrid blends seems remarkably promising as it has provided much higher ductility and discernible strain hardening. Using mono-GF did not improve ductility, even showed brittle failure. Elsevier 2023-07-04 /pmc/articles/PMC10344753/ /pubmed/37456004 http://dx.doi.org/10.1016/j.heliyon.2023.e17926 Text en © 2023 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Muhyaddin, Guler Fakhraddin Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers |
title | Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers |
title_full | Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers |
title_fullStr | Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers |
title_full_unstemmed | Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers |
title_short | Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers |
title_sort | mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344753/ https://www.ncbi.nlm.nih.gov/pubmed/37456004 http://dx.doi.org/10.1016/j.heliyon.2023.e17926 |
work_keys_str_mv | AT muhyaddingulerfakhraddin mechanicalandfracturecharacteristicsofultrahighperformanceconcretesreinforcedwithhybridizationofsteelandglassfibers |