Cargando…
Local total anti-magic chromatic number of graphs
Let [Formula: see text] be a graph without isolated vertices and let [Formula: see text] and [Formula: see text]. A bijection [Formula: see text] is said to be local total anti-magic labeling of a graph G if it satisfies the conditions: (i.) for any edge uv, [Formula: see text] , where u and v in [F...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344762/ https://www.ncbi.nlm.nih.gov/pubmed/37456059 http://dx.doi.org/10.1016/j.heliyon.2023.e17761 |
_version_ | 1785072931288645632 |
---|---|
author | Sandhiya, V. Nalliah, M. |
author_facet | Sandhiya, V. Nalliah, M. |
author_sort | Sandhiya, V. |
collection | PubMed |
description | Let [Formula: see text] be a graph without isolated vertices and let [Formula: see text] and [Formula: see text]. A bijection [Formula: see text] is said to be local total anti-magic labeling of a graph G if it satisfies the conditions: (i.) for any edge uv, [Formula: see text] , where u and v in [Formula: see text] (ii.) for any two adjacent edges e and [Formula: see text] , [Formula: see text] (iii.) for any edge [Formula: see text] is incident to the vertex v, [Formula: see text] , where weight of vertex u is, [Formula: see text] , [Formula: see text] is the set of edges with every edge of [Formula: see text] one end vertex is u and an edge weight is [Formula: see text]. In this paper, we have introduced a local total anti-magic labeling (LTAL) and the local total anti-magic chromatic number (LTACN). Also, we obtain the LTACN for the graphs [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text]. |
format | Online Article Text |
id | pubmed-10344762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103447622023-07-15 Local total anti-magic chromatic number of graphs Sandhiya, V. Nalliah, M. Heliyon Research Article Let [Formula: see text] be a graph without isolated vertices and let [Formula: see text] and [Formula: see text]. A bijection [Formula: see text] is said to be local total anti-magic labeling of a graph G if it satisfies the conditions: (i.) for any edge uv, [Formula: see text] , where u and v in [Formula: see text] (ii.) for any two adjacent edges e and [Formula: see text] , [Formula: see text] (iii.) for any edge [Formula: see text] is incident to the vertex v, [Formula: see text] , where weight of vertex u is, [Formula: see text] , [Formula: see text] is the set of edges with every edge of [Formula: see text] one end vertex is u and an edge weight is [Formula: see text]. In this paper, we have introduced a local total anti-magic labeling (LTAL) and the local total anti-magic chromatic number (LTACN). Also, we obtain the LTACN for the graphs [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text]. Elsevier 2023-07-04 /pmc/articles/PMC10344762/ /pubmed/37456059 http://dx.doi.org/10.1016/j.heliyon.2023.e17761 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Sandhiya, V. Nalliah, M. Local total anti-magic chromatic number of graphs |
title | Local total anti-magic chromatic number of graphs |
title_full | Local total anti-magic chromatic number of graphs |
title_fullStr | Local total anti-magic chromatic number of graphs |
title_full_unstemmed | Local total anti-magic chromatic number of graphs |
title_short | Local total anti-magic chromatic number of graphs |
title_sort | local total anti-magic chromatic number of graphs |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344762/ https://www.ncbi.nlm.nih.gov/pubmed/37456059 http://dx.doi.org/10.1016/j.heliyon.2023.e17761 |
work_keys_str_mv | AT sandhiyav localtotalantimagicchromaticnumberofgraphs AT nalliahm localtotalantimagicchromaticnumberofgraphs |