Cargando…
Interpretable deep learning for improving cancer patient survival based on personal transcriptomes
Precision medicine chooses the optimal drug for a patient by considering individual differences. With the tremendous amount of data accumulated for cancers, we develop an interpretable neural network to predict cancer patient survival based on drug prescriptions and personal transcriptomes (CancerID...
Autores principales: | Sun, Bo, Chen, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344908/ https://www.ncbi.nlm.nih.gov/pubmed/37443344 http://dx.doi.org/10.1038/s41598-023-38429-7 |
Ejemplares similares
-
A deep learning-based framework for lung cancer survival analysis with biomarker interpretation
por: Cui, Lei, et al.
Publicado: (2020) -
Interpretable deep learning survival predictive tool for small cell lung cancer
por: Zhang, Dongrui, et al.
Publicado: (2023) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Identifying common transcriptome signatures of cancer by interpreting deep learning models
por: Jha, Anupama, et al.
Publicado: (2022) -
Deep learning interpretation of echocardiograms
por: Ghorbani, Amirata, et al.
Publicado: (2020)