Cargando…
Developing an Artificial Intelligence-Guided Signal Detection in the Food and Drug Administration Adverse Event Reporting System (FAERS): A Proof-of-Concept Study Using Galcanezumab and Simulated Data
INTRODUCTION: Time- and resource-demanding activities related to processing individual case safety reports (ICSRs) include manual procedures to evaluate individual causality with the final goal of dismissing false-positive safety signals. Eminent experts and a representative from pharmaceutical indu...
Autores principales: | Al-Azzawi, Fahed, Mahmoud, Israa, Haguinet, François, Bate, Andrew, Sessa, Maurizio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345058/ https://www.ncbi.nlm.nih.gov/pubmed/37300636 http://dx.doi.org/10.1007/s40264-023-01317-0 |
Ejemplares similares
-
Methods to Compare Adverse Events in Twitter to FAERS, Drug Information Databases, and Systematic Reviews: Proof of Concept with Adalimumab
por: Smith, Karen, et al.
Publicado: (2018) -
A machine-learning guided method for predicting add-on and switch in secondary data sources: A case study on anti-seizure medications in Danish registries
por: Breitenstein, Peter Suhr, et al.
Publicado: (2022) -
Stimulated Reporting: The Impact of US Food and Drug Administration-Issued Alerts on the Adverse Event Reporting System (FAERS)
por: Hoffman, Keith B., et al.
Publicado: (2014) -
Antipsychotics-Associated Serious Adverse Events in Children: An Analysis of the FAERS Database
por: Kimura, Goji, et al.
Publicado: (2015) -
Analysis of Opioid-Related Adverse Events in Japan Using FAERS Database
por: Hirai, Risako, et al.
Publicado: (2023)