Cargando…
Multi-center study on predicting breast cancer lymph node status from core needle biopsy specimens using multi-modal and multi-instance deep learning
The objective of our study is to develop a deep learning model based on clinicopathological data and digital pathological image of core needle biopsy specimens for predicting breast cancer lymph node metastasis. We collected 3701 patients from the Fourth Hospital of Hebei Medical University and 190...
Autores principales: | Ding, Yan, Yang, Fan, Han, Mengxue, Li, Chunhui, Wang, Yanan, Xu, Xin, Zhao, Min, Zhao, Meng, Yue, Meng, Deng, Huiyan, Yang, Huichai, Yao, Jianhua, Liu, Yueping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345095/ https://www.ncbi.nlm.nih.gov/pubmed/37443117 http://dx.doi.org/10.1038/s41523-023-00562-x |
Ejemplares similares
-
Histological diagnosis of unprocessed breast core-needle biopsy via stimulated Raman scattering microscopy and multi-instance learning
por: Yang, Yifan, et al.
Publicado: (2023) -
Colorectal cancer lymph node metastasis prediction with weakly supervised transformer-based multi-instance learning
por: Tan, Luxin, et al.
Publicado: (2023) -
Automated skin biopsy histopathological image annotation using multi-instance representation and learning
por: Zhang, Gang, et al.
Publicado: (2013) -
Comparison of Multi-Gene Testing Data Between Fresh and Formalin-Fixed Specimens From Core Needle Biopsy in Patients With NSCLC
por: Yao, Zhi-Gang, et al.
Publicado: (2021) -
Enhancing unsupervised medical entity linking with multi-instance learning
por: Yan, Cheng, et al.
Publicado: (2021)