Cargando…
Comparing machine learning algorithms to predict COVID‑19 mortality using a dataset including chest computed tomography severity score data
Since the beginning of the COVID-19 pandemic, new and non-invasive digital technologies such as artificial intelligence (AI) had been introduced for mortality prediction of COVID-19 patients. The prognostic performances of the machine learning (ML)-based models for predicting clinical outcomes of CO...
Autores principales: | Zakariaee, Seyed Salman, Naderi, Negar, Ebrahimi, Mahdi, Kazemi-Arpanahi, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345104/ https://www.ncbi.nlm.nih.gov/pubmed/37443373 http://dx.doi.org/10.1038/s41598-023-38133-6 |
Ejemplares similares
-
Association of chest CT severity score with mortality of COVID-19 patients: a systematic review and meta-analysis
por: Zakariaee, Seyed Salman, et al.
Publicado: (2022) -
Prognostic significance of chest CT severity score in mortality prediction of COVID-19 patients, a machine learning study
por: Zakariaee, Seyed Salman, et al.
Publicado: (2023) -
Prognostic accuracy of visual lung damage computed tomography score for mortality prediction in patients with COVID-19 pneumonia: a systematic review and meta-analysis
por: Zakariaee, Seyed Salman, et al.
Publicado: (2022) -
Influence of threshold selection strategy on the prognostic accuracy of chest CT severity score for mortality prediction of COVID-19 patients()
por: Zakariaee, Seyed Salman, et al.
Publicado: (2022) -
Diagnostic Efficacy of Chest Computed Tomography for Coronavirus Disease 2019
por: Zakariaee, Seyed Salman, et al.
Publicado: (2023)