Cargando…
A diagnostic classification of lung nodules using multiple-scale residual network
Computed tomography (CT) scans have been shown to be an effective way of improving diagnostic efficacy and reducing lung cancer mortality. However, distinguishing benign from malignant nodules in CT imaging remains challenging. This study aims to develop a multiple-scale residual network (MResNet) t...
Autores principales: | Wang, Hongfeng, Zhu, Hai, Ding, Lihua, Yang, Kaili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345110/ https://www.ncbi.nlm.nih.gov/pubmed/37443333 http://dx.doi.org/10.1038/s41598-023-38350-z |
Ejemplares similares
-
Accurate classification of lung nodules on CT images using the TransUnet
por: Wang, Hongfeng, et al.
Publicado: (2022) -
Multi-Level Cross Residual Network for Lung Nodule Classification
por: Lyu, Juan, et al.
Publicado: (2020) -
Classification of Lung Nodules Based on Deep Residual Networks and Migration Learning
por: Wu, Panpan, et al.
Publicado: (2020) -
Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies
por: Nasrullah, Nasrullah, et al.
Publicado: (2019) -
Lung nodule segmentation via semi-residual multi-resolution neural networks
por: Wang, Chenyang, et al.
Publicado: (2023)