Cargando…
Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting
Advances in artificial intelligence have cultivated a strong interest in developing and validating the clinical utilities of computer-aided diagnostic models. Machine learning for diagnostic neuroimaging has often been applied to detect psychological and neurological disorders, typically on small-sc...
Autores principales: | Leming, Matthew J., Bron, Esther E., Bruffaerts, Rose, Ou, Yangming, Iglesias, Juan Eugenio, Gollub, Randy L., Im, Hyungsoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345121/ https://www.ncbi.nlm.nih.gov/pubmed/37443276 http://dx.doi.org/10.1038/s41746-023-00868-x |
Ejemplares similares
-
Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham
por: Leming, Matthew, et al.
Publicado: (2023) -
Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years
por: Zöllei, Lilla, et al.
Publicado: (2020) -
How Machine Learning is Powering Neuroimaging to Improve Brain Health
por: Singh, Nalini M., et al.
Publicado: (2022) -
Editorial: Artificial Intelligence for Medical Image Analysis of Neuroimaging Data
por: Zeng, Nianyin, et al.
Publicado: (2020) -
Application of Mass Multivariate Analysis on Neuroimaging Data Sets for Precision Diagnostics of Depression
por: Paunova, Rositsa, et al.
Publicado: (2022)