Cargando…
Dynamic graph neural network with adaptive edge attributes for air quality prediction: A case study in China
Air quality prediction is a typical Spatiotemporal modeling problem, which always uses different components to handle spatial and temporal dependencies in complex systems separately. Previous models based on time series analysis and recurrent neural network (RNN) methods have only modeled time serie...
Autores principales: | Xu, Jing, Wang, Shuo, Ying, Na, Xiao, Xiao, Zhang, Jiang, Jin, Zhiling, Cheng, Yun, Zhang, Gangfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345359/ https://www.ncbi.nlm.nih.gov/pubmed/37456022 http://dx.doi.org/10.1016/j.heliyon.2023.e17746 |
Ejemplares similares
-
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
por: Zhang, Lei, et al.
Publicado: (2023) -
Auxiliary Graph for Attribute Graph Clustering
por: Li, Wang, et al.
Publicado: (2022) -
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
On Edge Exchangeable Random Graphs
por: Janson, Svante
Publicado: (2017) -
Spatiotemporal adaptive attention graph convolution network for city-level air quality prediction
por: Liu, Hexiang, et al.
Publicado: (2023)