Cargando…
Preparation and Characterization of a Novel Tragacanth Gum/Chitosan/Sr-Nano-Hydroxyapatite Composite Membrane
It is a great challenge to obtain an ideal guided bone regeneration (GBR) membrane. In this study, tragacanth gum (GT) was introduced into a chitosan/nano-hydroxyapatite (CS/n-HA) system. The effects of different component ratios and strontium-doped nano-hydroxyapatite (Sr-HA) on the physical-chemic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346143/ https://www.ncbi.nlm.nih.gov/pubmed/37447587 http://dx.doi.org/10.3390/polym15132942 |
Sumario: | It is a great challenge to obtain an ideal guided bone regeneration (GBR) membrane. In this study, tragacanth gum (GT) was introduced into a chitosan/nano-hydroxyapatite (CS/n-HA) system. The effects of different component ratios and strontium-doped nano-hydroxyapatite (Sr-HA) on the physical-chemical properties and degradation behavior of the CS/Sr-n-HA/GT ternary composite membrane were investigated using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, electromechanical universal tester and in vitro soaking in simulated body fluid (SBF). The results showed that CS could be ionically crosslinked with GT through electrostatic interaction, and Sr-n-HA was loaded via hydrogen bond, which endowed the GT/CS/n-HA composite membrane with good tensile strength and hydrophilicity. In addition, the results of immersion in SBF in vitro showed that CS/n-HA/GT composite membranes had different degradation rates and good apatite deposition by investigating the changes in pH value, weight loss, water absorption ratio, SEM morphology observation and tensile strength reduction. All results revealed that the CS/Sr-n-HA/GT (6:2:2) ternary composite membrane possessed the strongest ionic crosslinking of GT and CS, which was expected to obtain more satisfactory GBR membranes, and this study will provide new applications of GT in the field of biomedical membranes. |
---|