Cargando…

Impact of Lung-Related Polygenic Risk Scores on Chronic Obstructive Pulmonary Disease Risk and Their Interaction with w-3 Fatty Acid Intake in Middle-Aged and Elderly Individuals

Chronic obstructive pulmonary disease (COPD) is a complex, progressive respiratory disorder with persistent airflow limitation and tissue destruction. We aimed to explore the genetic impact of COPD and its interaction with nutrient intake in 8840 middle-aged and elderly individuals from the Ansan/An...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ki-Song, Park, Sunmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346150/
https://www.ncbi.nlm.nih.gov/pubmed/37447386
http://dx.doi.org/10.3390/nu15133062
Descripción
Sumario:Chronic obstructive pulmonary disease (COPD) is a complex, progressive respiratory disorder with persistent airflow limitation and tissue destruction. We aimed to explore the genetic impact of COPD and its interaction with nutrient intake in 8840 middle-aged and elderly individuals from the Ansan/Ansung cohorts. Participants were diagnosed with COPD if the ratio of forced expiratory volume in 1 s (FEV1) to forced vital capacity (FVC) was less than 0.7 using spirometry, and if they were previously diagnosed with COPD by a physician. Genome-wide association studies (GWAS) were performed to screen for genetic variants associated with COPD risk. Among them, we selected the genetic variants that exhibited interactions using the generalized multifactor dimensionality reduction (GMDR) method. The polygenic risk score (PRS) was computed by summing the number of risk alleles in the SNP-SNP interaction models that adhered to specific rules. Subsequently, participants were categorized into low-PRS, medium-PRS, and high-PRS groups. The participants with COPD exhibited significantly lower FEV1/FVC ratios (0.64) than those without COPD (0.82). It was positively associated with inflammation markers (serum C-reactive protein and white blood cell levels). A higher proportion of COPD participants were smokers and engaged in regular exercise. The 5-SNP model consisted of FAM13A_rs1585258, CAV1_rs1997571, CPD_rs719601, PEPD_rs10405598, and ITGA1_rs889294, and showed a significant association with COPD risk (p < 0.001). Participants in the high-PRS group of this model had a 2.2-fold higher risk of COPD than those in the low-PRS group after adjusting for covariates. The PRS interacted with w-3 fatty acid intake and exercise, thus influencing the risk of COPD. There was an increase in COPD incidence among individuals with a higher PRS, particularly those with low consumption of w-3 fatty acid and engaged in high levels of exercise. In conclusion, adults with a high-PRS are susceptible to COPD risk, and w-3 fatty acid intake and exercise may impact the risk of developing COPD, potentially applying to formulate precision medicines to prevent COPD.