Cargando…
Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT)
Distinguishing pathological gait is challenging in neurology because of the difficulty of capturing total body movement and its analysis. We aimed to obtain a convenient recording with an iPhone and establish an algorithm based on deep learning. From May 2021 to November 2022 at Yamagata University...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346151/ https://www.ncbi.nlm.nih.gov/pubmed/37448065 http://dx.doi.org/10.3390/s23136217 |
Sumario: | Distinguishing pathological gait is challenging in neurology because of the difficulty of capturing total body movement and its analysis. We aimed to obtain a convenient recording with an iPhone and establish an algorithm based on deep learning. From May 2021 to November 2022 at Yamagata University Hospital, Shiga University, and Takahata Town, patients with idiopathic normal pressure hydrocephalus (n = 48), Parkinson’s disease (n = 21), and other neuromuscular diseases (n = 45) comprised the pathological gait group (n = 114), and the control group consisted of 160 healthy volunteers. iPhone application TDPT-GT captured the subjects walking in a circular path of about 1 meter in diameter, a markerless motion capture system, with an iPhone camera, which generated the three-axis 30 frames per second (fps) relative coordinates of 27 body points. A light gradient boosting machine (Light GBM) with stratified k-fold cross-validation (k = 5) was applied for gait collection for about 1 min per person. The median ability model tested 200 frames of each person’s data for its distinction capability, which resulted in the area under a curve of 0.719. The pathological gait captured by the iPhone could be distinguished by artificial intelligence. |
---|