Cargando…
Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT)
Distinguishing pathological gait is challenging in neurology because of the difficulty of capturing total body movement and its analysis. We aimed to obtain a convenient recording with an iPhone and establish an algorithm based on deep learning. From May 2021 to November 2022 at Yamagata University...
Autores principales: | Iseki, Chifumi, Hayasaka, Tatsuya, Yanagawa, Hyota, Komoriya, Yuta, Kondo, Toshiyuki, Hoshi, Masayuki, Fukami, Tadanori, Kobayashi, Yoshiyuki, Ueda, Shigeo, Kawamae, Kaneyuki, Ishikawa, Masatsune, Yamada, Shigeki, Aoyagi, Yukihiko, Ohta, Yasuyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346151/ https://www.ncbi.nlm.nih.gov/pubmed/37448065 http://dx.doi.org/10.3390/s23136217 |
Ejemplares similares
-
Fluctuations in Upper and Lower Body Movement during Walking in Normal Pressure Hydrocephalus and Parkinson’s Disease Assessed by Motion Capture with a Smartphone Application, TDPT-GT
por: Iseki, Chifumi, et al.
Publicado: (2023) -
Development of Smartphone Application for Markerless Three-Dimensional Motion Capture Based on Deep Learning Model
por: Aoyagi, Yukihiko, et al.
Publicado: (2022) -
Quantitative Gait Feature Assessment on Two-Dimensional Body Axis Projection Planes Converted from Three-Dimensional Coordinates Estimated with a Deep Learning Smartphone App
por: Yamada, Shigeki, et al.
Publicado: (2023) -
Quantitative Evaluation of Gait Disturbance on an Instrumented Timed Up-and-go Test
por: Yamada, Shigeki, et al.
Publicado: (2019) -
Gait Assessment Using Three-Dimensional Acceleration of the Trunk in Idiopathic Normal Pressure Hydrocephalus
por: Yamada, Shigeki, et al.
Publicado: (2021)