Cargando…
Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells
The chemical profiling of phenolic and terpenoid compounds in whole cardamom, skin, and seeds (Elettaria cardamomum (L.) Maton) showed 11 phenolics and 16 terpenoids, many of which are reported for the first time. Herein, we report the anti-inflammatory properties of a methanolic extract of whole ca...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346154/ https://www.ncbi.nlm.nih.gov/pubmed/37447289 http://dx.doi.org/10.3390/nu15132965 |
_version_ | 1785073247214108672 |
---|---|
author | Sreedharan, Shareena Nair, Vimal Cisneros-Zevallos, Luis |
author_facet | Sreedharan, Shareena Nair, Vimal Cisneros-Zevallos, Luis |
author_sort | Sreedharan, Shareena |
collection | PubMed |
description | The chemical profiling of phenolic and terpenoid compounds in whole cardamom, skin, and seeds (Elettaria cardamomum (L.) Maton) showed 11 phenolics and 16 terpenoids, many of which are reported for the first time. Herein, we report the anti-inflammatory properties of a methanolic extract of whole cardamom in colon and macrophage cells stimulated with an inflammatory bacteria lipopolysaccharide (LPS). The results show that cardamom extracts lowered the expression of pro-inflammatory genes NFkβ, TNFα, IL-6, and COX2 in colon cells by reducing reactive oxygen species (ROS) while not affecting LXRα. In macrophages, cardamom extracts lowered the expression of pro-inflammatory genes NFkβ, TNFα, IL-6, and COX2 and decreased NO levels through a reduction in ROS and enhanced gene expression of nuclear receptors LXRα and PPARγ. The cardamom extracts in a range of 200–800 μg/mL did not show toxicity effects in colon or macrophage cells. The whole-cardamom methanolic extracts contained high levels of phenolics compounds (e.g., protocatechuic acid, caffeic acid, syringic acid, and 5-O-caffeoylquinic acid, among others) and are likely responsible for the anti-inflammatory and multifunctional effects observed in this study. The generated information suggests that cardamom may play a protective role against low-grade inflammation that can be the basis of future in vivo studies using mice models of inflammation and associated chronic diseases. |
format | Online Article Text |
id | pubmed-10346154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103461542023-07-15 Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells Sreedharan, Shareena Nair, Vimal Cisneros-Zevallos, Luis Nutrients Article The chemical profiling of phenolic and terpenoid compounds in whole cardamom, skin, and seeds (Elettaria cardamomum (L.) Maton) showed 11 phenolics and 16 terpenoids, many of which are reported for the first time. Herein, we report the anti-inflammatory properties of a methanolic extract of whole cardamom in colon and macrophage cells stimulated with an inflammatory bacteria lipopolysaccharide (LPS). The results show that cardamom extracts lowered the expression of pro-inflammatory genes NFkβ, TNFα, IL-6, and COX2 in colon cells by reducing reactive oxygen species (ROS) while not affecting LXRα. In macrophages, cardamom extracts lowered the expression of pro-inflammatory genes NFkβ, TNFα, IL-6, and COX2 and decreased NO levels through a reduction in ROS and enhanced gene expression of nuclear receptors LXRα and PPARγ. The cardamom extracts in a range of 200–800 μg/mL did not show toxicity effects in colon or macrophage cells. The whole-cardamom methanolic extracts contained high levels of phenolics compounds (e.g., protocatechuic acid, caffeic acid, syringic acid, and 5-O-caffeoylquinic acid, among others) and are likely responsible for the anti-inflammatory and multifunctional effects observed in this study. The generated information suggests that cardamom may play a protective role against low-grade inflammation that can be the basis of future in vivo studies using mice models of inflammation and associated chronic diseases. MDPI 2023-06-29 /pmc/articles/PMC10346154/ /pubmed/37447289 http://dx.doi.org/10.3390/nu15132965 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sreedharan, Shareena Nair, Vimal Cisneros-Zevallos, Luis Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells |
title | Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells |
title_full | Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells |
title_fullStr | Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells |
title_full_unstemmed | Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells |
title_short | Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells |
title_sort | protective role of phenolic compounds from whole cardamom (elettaria cardamomum (l.) maton) against lps-induced inflammation in colon and macrophage cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346154/ https://www.ncbi.nlm.nih.gov/pubmed/37447289 http://dx.doi.org/10.3390/nu15132965 |
work_keys_str_mv | AT sreedharanshareena protectiveroleofphenoliccompoundsfromwholecardamomelettariacardamomumlmatonagainstlpsinducedinflammationincolonandmacrophagecells AT nairvimal protectiveroleofphenoliccompoundsfromwholecardamomelettariacardamomumlmatonagainstlpsinducedinflammationincolonandmacrophagecells AT cisneroszevallosluis protectiveroleofphenoliccompoundsfromwholecardamomelettariacardamomumlmatonagainstlpsinducedinflammationincolonandmacrophagecells |