Cargando…
Deep Learning Based Apples Counting for Yield Forecast Using Proposed Flying Robotic System
Nowadays, Convolution Neural Network (CNN) based deep learning methods are widely used in detecting and classifying fruits from faults, color and size characteristics. In this study, two different neural network model estimators are employed to detect apples using the Single-Shot Multibox Detection...
Autores principales: | Yıldırım, Şahin, Ulu, Burak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346156/ https://www.ncbi.nlm.nih.gov/pubmed/37448020 http://dx.doi.org/10.3390/s23136171 |
Ejemplares similares
-
Recognition and Counting of Apples in a Dynamic State Using a 3D Camera and Deep Learning Algorithms for Robotic Harvesting Systems
por: Abeyrathna, R. M. Rasika D., et al.
Publicado: (2023) -
Is deeper always better? Evaluating deep learning models for yield forecasting with small data
por: Sabo, Filip, et al.
Publicado: (2023) -
Forecasting Corn Yield With Machine Learning Ensembles
por: Shahhosseini, Mohsen, et al.
Publicado: (2020) -
Deep Count: Fruit Counting Based on Deep Simulated Learning
por: Rahnemoonfar, Maryam, et al.
Publicado: (2017) -
Stock Market Forecasting Based on Spatiotemporal Deep Learning
por: Li, Yung-Chen, et al.
Publicado: (2023)