Cargando…
CNN Hardware Accelerator for Real-Time Bearing Fault Diagnosis
This paper introduces a one-dimensional convolutional neural network (CNN) hardware accelerator. It is crafted to conduct real-time assessments of bearing conditions using economical hardware components, implemented on a field-programmable gate array evaluation platform, negating the necessity to tr...
Autores principales: | Chung, Ching-Che, Liang, Yu-Pei, Jiang, Hong-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346166/ https://www.ncbi.nlm.nih.gov/pubmed/37447743 http://dx.doi.org/10.3390/s23135897 |
Ejemplares similares
-
A New Fault Diagnosis of Rolling Bearing Based on Markov Transition Field and CNN
por: Wang, Mengjiao, et al.
Publicado: (2022) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022) -
Bearing Fault Diagnosis via Improved One-Dimensional Multi-Scale Dilated CNN
por: He, Jiajun, et al.
Publicado: (2021) -
A Low-Power Hardware Architecture for Real-Time CNN Computing
por: Liu, Xinyu, et al.
Publicado: (2023) -
Fault Diagnosis of Rolling Bearing Based on HPSO Algorithm Optimized CNN-LSTM Neural Network
por: Tian, He, et al.
Publicado: (2023)