Cargando…
Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance
Maize (Zea mays L.) is a salt-sensitive plant that experiences stunted growth and development during early seedling stages under salt stress. Salicylic acid (SA) is a major growth hormone that has been observed to induce resistance in plants against different abiotic stresses. Furthermore, plant gro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346208/ https://www.ncbi.nlm.nih.gov/pubmed/37447077 http://dx.doi.org/10.3390/plants12132519 |
_version_ | 1785073260010930176 |
---|---|
author | Ali, Qasim Ahmad, Maqshoof Kamran, Muhammad Ashraf, Sana Shabaan, Muhammad Babar, Babar Hussain Zulfiqar, Usman Haider, Fasih Ullah Ali, M. Ajmal Elshikh, Mohamed S |
author_facet | Ali, Qasim Ahmad, Maqshoof Kamran, Muhammad Ashraf, Sana Shabaan, Muhammad Babar, Babar Hussain Zulfiqar, Usman Haider, Fasih Ullah Ali, M. Ajmal Elshikh, Mohamed S |
author_sort | Ali, Qasim |
collection | PubMed |
description | Maize (Zea mays L.) is a salt-sensitive plant that experiences stunted growth and development during early seedling stages under salt stress. Salicylic acid (SA) is a major growth hormone that has been observed to induce resistance in plants against different abiotic stresses. Furthermore, plant growth-promoting rhizobacteria (PGPR) have shown considerable potential in conferring salinity tolerance to crops via facilitating growth promotion, yield improvement, and regulation of various physiological processes. In this regard, combined application of PGPR and SA can have wide applicability in supporting plant growth under salt stress. We investigated the impact of salinity on the growth and yield attributes of maize and explored the combined role of PGPR and SA in mitigating the effect of salt stress. Three different levels of salinity were developed (original, 4 and 8 dS m(−1)) in pots using NaCl. Maize seeds were inoculated with salt-tolerant Pseudomonas aeruginosa strain, whereas foliar application of SA was given at the three-leaf stage. We observed that salinity stress adversely affected maize growth, yield, and physiological attributes compared to the control. However, both individual and combined applications of PGPR and SA alleviated the negative effects of salinity and improved all the measured plant attributes. The response of PGPR + SA was significant in enhancing the shoot and root dry weights (41 and 56%), relative water contents (32%), chlorophyll a and b contents (25 and 27%), and grain yield (41%) of maize under higher salinity level (i.e., 8 dS m(−1)) as compared to untreated unstressed control. Moreover, significant alterations in ascorbate peroxidase (53%), catalase (47%), superoxide dismutase (21%), MDA contents (40%), Na(+) (25%), and K(+) (30%) concentration of leaves were pragmatic under combined application of PGPR and SA. We concluded that integration of PGPR and SA can efficiently induce salinity tolerance and improve plant growth under stressed conditions. |
format | Online Article Text |
id | pubmed-10346208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103462082023-07-15 Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance Ali, Qasim Ahmad, Maqshoof Kamran, Muhammad Ashraf, Sana Shabaan, Muhammad Babar, Babar Hussain Zulfiqar, Usman Haider, Fasih Ullah Ali, M. Ajmal Elshikh, Mohamed S Plants (Basel) Article Maize (Zea mays L.) is a salt-sensitive plant that experiences stunted growth and development during early seedling stages under salt stress. Salicylic acid (SA) is a major growth hormone that has been observed to induce resistance in plants against different abiotic stresses. Furthermore, plant growth-promoting rhizobacteria (PGPR) have shown considerable potential in conferring salinity tolerance to crops via facilitating growth promotion, yield improvement, and regulation of various physiological processes. In this regard, combined application of PGPR and SA can have wide applicability in supporting plant growth under salt stress. We investigated the impact of salinity on the growth and yield attributes of maize and explored the combined role of PGPR and SA in mitigating the effect of salt stress. Three different levels of salinity were developed (original, 4 and 8 dS m(−1)) in pots using NaCl. Maize seeds were inoculated with salt-tolerant Pseudomonas aeruginosa strain, whereas foliar application of SA was given at the three-leaf stage. We observed that salinity stress adversely affected maize growth, yield, and physiological attributes compared to the control. However, both individual and combined applications of PGPR and SA alleviated the negative effects of salinity and improved all the measured plant attributes. The response of PGPR + SA was significant in enhancing the shoot and root dry weights (41 and 56%), relative water contents (32%), chlorophyll a and b contents (25 and 27%), and grain yield (41%) of maize under higher salinity level (i.e., 8 dS m(−1)) as compared to untreated unstressed control. Moreover, significant alterations in ascorbate peroxidase (53%), catalase (47%), superoxide dismutase (21%), MDA contents (40%), Na(+) (25%), and K(+) (30%) concentration of leaves were pragmatic under combined application of PGPR and SA. We concluded that integration of PGPR and SA can efficiently induce salinity tolerance and improve plant growth under stressed conditions. MDPI 2023-06-30 /pmc/articles/PMC10346208/ /pubmed/37447077 http://dx.doi.org/10.3390/plants12132519 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ali, Qasim Ahmad, Maqshoof Kamran, Muhammad Ashraf, Sana Shabaan, Muhammad Babar, Babar Hussain Zulfiqar, Usman Haider, Fasih Ullah Ali, M. Ajmal Elshikh, Mohamed S Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance |
title | Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance |
title_full | Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance |
title_fullStr | Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance |
title_full_unstemmed | Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance |
title_short | Synergistic Effects of Rhizobacteria and Salicylic Acid on Maize Salt-Stress Tolerance |
title_sort | synergistic effects of rhizobacteria and salicylic acid on maize salt-stress tolerance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346208/ https://www.ncbi.nlm.nih.gov/pubmed/37447077 http://dx.doi.org/10.3390/plants12132519 |
work_keys_str_mv | AT aliqasim synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT ahmadmaqshoof synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT kamranmuhammad synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT ashrafsana synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT shabaanmuhammad synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT babarbabarhussain synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT zulfiqarusman synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT haiderfasihullah synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT alimajmal synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance AT elshikhmohameds synergisticeffectsofrhizobacteriaandsalicylicacidonmaizesaltstresstolerance |