Cargando…
Network Security Situation Prediction Based on Optimized Clock-Cycle Recurrent Neural Network for Sensor-Enabled Networks
We propose an optimized Clockwork Recurrent Neural Network (CW-RNN) based approach to address temporal dynamics and nonlinearity in network security situations, improving prediction accuracy and real-time performance. By leveraging the clock-cycle RNN, we enable the model to capture both short-term...
Autores principales: | Du, Xiuli, Ding, Xiaohui, Tao, Fan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346216/ https://www.ncbi.nlm.nih.gov/pubmed/37447936 http://dx.doi.org/10.3390/s23136087 |
Ejemplares similares
-
Network Security Situation Prediction Model Based on EMD and ELPSO Optimized BiGRU Neural Network
por: Zhang, Biao, et al.
Publicado: (2022) -
Multimedia Security Situation Prediction Based on Optimization of Radial Basis Function Neural Network Algorithm
por: Chen, Gan
Publicado: (2022) -
Survey of Technology in Network Security Situation Awareness
por: Zhang, Junwei, et al.
Publicado: (2023) -
Energy-efficient Optimization of Reorganization-Enabled Wireless Sensor Networks
por: Wang, Xue, et al.
Publicado: (2007) -
Lagrange Programming Neural Network for TOA-Based Localization with Clock Asynchronization and Sensor Location Uncertainties
por: Jia, Changgui, et al.
Publicado: (2018)