Cargando…

Molecular Characterization and Genetic Diversity of Ginkgo (Ginkgo biloba L.) Based on Insertions and Deletions (InDel) Markers

As a “living fossil”, ginkgo (Ginkgo biloba L.) has significant ornamental, medicinal, and timber value. However, the breeding improvement of ginkgo was limited by the lack of enough excellent germplasms and suitable molecular markers. Here, we characterized numerous polymorphic insertion/deletion (...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dan, Zhou, Qi, Le, Linlin, Fu, Fangfang, Wang, Guibin, Cao, Fuliang, Yang, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346307/
https://www.ncbi.nlm.nih.gov/pubmed/37447128
http://dx.doi.org/10.3390/plants12132567
Descripción
Sumario:As a “living fossil”, ginkgo (Ginkgo biloba L.) has significant ornamental, medicinal, and timber value. However, the breeding improvement of ginkgo was limited by the lack of enough excellent germplasms and suitable molecular markers. Here, we characterized numerous polymorphic insertion/deletion (InDel) markers using RAD-seq in 12 different ginkgo cultivars. The total of 279,534 InDels identified were unequally distributed across 12 chromosomes in the ginkgo genome. Of these, 52.56% (146,919) and 47.44% (132,615) were attributed to insertions and deletions, respectively. After random selection and validation, 26 pairs of polymorphic primers were used for molecular diversity analysis in 87 ginkgo cultivars and clones. The average values of observed heterozygosity and polymorphism information were 0.625 and 0.517, respectively. The results of population structure analyses were similar to those of neighbor-joining and principal component analyses, which divided all germplasms into two distinct groups. Moreover, 11 ginkgo core collections accounted for approximately 12.64% of the total ginkgo germplasms obtained, representing well the allelic diversity of all original germplasms. Therefore, these InDels can be used for germplasm management and genetic diversity analyses in ginkgo and the core collections will be used effectively for ginkgo genetic improvement.