Cargando…
Data-Driven Insights through Industrial Retrofitting: An Anonymized Dataset with Machine Learning Use Cases
Small and medium-sized enterprises (SMEs) often encounter practical challenges and limitations when extracting valuable insights from the data of retrofitted or brownfield equipment. The existing literature fails to reflect the full reality and potential of data-driven analysis in current SME enviro...
Autores principales: | Atzeni, Daniele, Ramjattan, Reshawn, Figliè, Roberto, Baldi, Giacomo, Mazzei, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346308/ https://www.ncbi.nlm.nih.gov/pubmed/37447927 http://dx.doi.org/10.3390/s23136078 |
Ejemplares similares
-
Machine Learning for Industry 4.0: A Systematic Review Using Deep Learning-Based Topic Modelling
por: Mazzei, Daniele, et al.
Publicado: (2022) -
A Systematic Review of Wi-Fi and Machine Learning Integration with Topic Modeling Techniques
por: Atzeni, Daniele, et al.
Publicado: (2022) -
Numerical and experimental dataset for a retrofitted data center
por: Kuzay, Mustafa, et al.
Publicado: (2022) -
Seismic Retrofitting of Existing Industrial Steel Buildings: A Case-Study
por: Tartaglia, Roberto, et al.
Publicado: (2022) -
Residential Retrofit
por: Baeli, Marion
Publicado: (2019)