Cargando…
Classifying Unstable and Stable Walking Patterns Using Electroencephalography Signals and Machine Learning Algorithms
Analyzing unstable gait patterns from Electroencephalography (EEG) signals is vital to develop real-time brain-computer interface (BCI) systems to prevent falls and associated injuries. This study investigates the feasibility of classification algorithms to detect walking instability utilizing EEG s...
Autores principales: | Soangra, Rahul, Smith, Jo Armour, Rajagopal, Sivakumar, Yedavalli, Sai Viswanth Reddy, Anirudh, Erandumveetil Ramadas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346345/ https://www.ncbi.nlm.nih.gov/pubmed/37447852 http://dx.doi.org/10.3390/s23136005 |
Ejemplares similares
-
Evaluation of surgical skill using machine learning with optimal wearable sensor locations
por: Soangra, Rahul, et al.
Publicado: (2022) -
Dual-Task Does Not Increase Slip and Fall Risk in Healthy Young and Older Adults during Walking
por: Soangra, Rahul, et al.
Publicado: (2017) -
Stable memory with unstable synapses
por: Susman, Lee, et al.
Publicado: (2019) -
Pain phenotypes classified by machine learning using electroencephalography features
por: Levitt, Joshua, et al.
Publicado: (2020) -
Classifying Schizotypy Using an Audiovisual Emotion Perception Test and Scalp Electroencephalography
por: Jeong, Ji Woon, et al.
Publicado: (2017)