Cargando…
Wind Turbine Condition Monitoring Using the SSA-Optimized Self-Attention BiLSTM Network and Changepoint Detection Algorithm
Condition-monitoring and anomaly-detection methods used for the assessment of wind turbines are key to reducing operation and maintenance (O&M) cost and improving their reliability. In this study, based on the sparrow search algorithm (SSA), bidirectional long short-term memory networks with a s...
Autores principales: | Yan, Junshuai, Liu, Yongqian, Li, Li, Ren, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346352/ https://www.ncbi.nlm.nih.gov/pubmed/37447722 http://dx.doi.org/10.3390/s23135873 |
Ejemplares similares
-
Prediction of air quality index based on the SSA-BiLSTM-LightGBM model
por: Zhang, Xiaowen, et al.
Publicado: (2023) -
Monthly runoff prediction based on a coupled VMD-SSA-BiLSTM model
por: Zhang, Xianqi, et al.
Publicado: (2023) -
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
por: Shen, Kailai, et al.
Publicado: (2023) -
Aeroengine Working Condition Recognition Based on MsCNN-BiLSTM
por: Zheng, Jinsong, et al.
Publicado: (2022) -
Human Activity Recognition Based on Residual Network and BiLSTM
por: Li, Yong, et al.
Publicado: (2022)