Cargando…
Characterization Method of Damage Information Based on Heterogeneous Network
Damage is the main form of conflict, and the characterization of damage information is an important component of conflict evaluation. In the existing research, damage mainly refers to the damage effect of a damage load on the target structure. However, in the actual conflict environment, damage is a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346354/ https://www.ncbi.nlm.nih.gov/pubmed/37447884 http://dx.doi.org/10.3390/s23136035 |
Sumario: | Damage is the main form of conflict, and the characterization of damage information is an important component of conflict evaluation. In the existing research, damage mainly refers to the damage effect of a damage load on the target structure. However, in the actual conflict environment, damage is a complex process that includes the entire process from the initial introduction of the damage load to the target function. Therefore, in this paper, the transfer logic of the damage process is analyzed, and the damage process is sequentially divided into being discovered, being attacked, being hit, and being destroyed in succession. Specifically, first considering the multiple types of each process, the transmission of damage is likened to the flow of damage, a network model to characterize damage information based on heterogeneous network meta-path and network flow theory (HF-MCDI) is established. Then, the characteristics of damage information are analyzed based on the capacity of the damage network, the correlation of the damage path, and the importance of the damage node. In addition, HF-MCDI can not only represent the complete damage information and the transmission characteristics of the damage load but also the structural characteristics of the target. Finally, the feasibility and effectiveness of the established HF-MCDI method are fully demonstrated by the example analysis of the launch platform. |
---|