Cargando…
A Probabilistic Digital Twin for Leak Localization in Water Distribution Networks Using Generative Deep Learning
Localizing leakages in large water distribution systems is an important and ever-present problem. Due to the complexity originating from water pipeline networks, too few sensors, and noisy measurements, this is a highly challenging problem to solve. In this work, we present a methodology based on ge...
Autores principales: | Mücke, Nikolaj T., Pandey, Prerna, Jain, Shashi, Bohté, Sander M., Oosterlee, Cornelis W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346374/ https://www.ncbi.nlm.nih.gov/pubmed/37448028 http://dx.doi.org/10.3390/s23136179 |
Ejemplares similares
-
GPR-Based Water Leak Models in Water Distribution Systems
por: Ayala-Cabrera, David, et al.
Publicado: (2013) -
Benchmarking dataset for leak detection and localization in water distribution systems
por: Aghashahi, Mohsen, et al.
Publicado: (2023) -
Design Principles for Shared Digital Twins in Distributed Systems
por: Haße, Hendrik, et al.
Publicado: (2022) -
Probabilistic Deep Learning
por: Sick, Beate, et al.
Publicado: (2020) -
Optimal Pressure Sensor Deployment for Leak Identification in Water Distribution Networks
por: Yang, Guang, et al.
Publicado: (2023)