Cargando…
TMNet: A Two-Branch Multi-Scale Semantic Segmentation Network for Remote Sensing Images
Pixel-level information of remote sensing images is of great value in many fields. CNN has a strong ability to extract image backbone features, but due to the localization of convolution operation, it is challenging to directly obtain global feature information and contextual semantic interaction, w...
Autores principales: | Gao, Yupeng, Zhang, Shengwei, Zuo, Dongshi, Yan, Weihong, Pan, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346442/ https://www.ncbi.nlm.nih.gov/pubmed/37447759 http://dx.doi.org/10.3390/s23135909 |
Ejemplares similares
-
Efficient Patch-Wise Semantic Segmentation for Large-Scale Remote Sensing Images
por: Liu, Yan, et al.
Publicado: (2018) -
Crop classification in high-resolution remote sensing images based on multi-scale feature fusion semantic segmentation model
por: Lu, Tingyu, et al.
Publicado: (2023) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Zhong, Bo, et al.
Publicado: (2021) -
SCU-Net: Semantic Segmentation Network for Learning Channel Information on Remote Sensing Images
por: Wang, Wei, et al.
Publicado: (2022) -
Knowledge and Geo-Object Based Graph Convolutional Network for Remote Sensing Semantic Segmentation
por: Cui, Wei, et al.
Publicado: (2021)