Cargando…
Determination of Optimal Predictors and Sampling Frequency to Develop Nutrient Soft Sensors Using Random Forest
Despite advancements in sensor technology, monitoring nutrients in situ and in real-time is still challenging and expensive. Soft sensors, based on data-driven models, offer an alternative to direct nutrient measurements. However, the high demand for data required for their development poses logisti...
Autores principales: | Arhab, Muhammad, Huang, Jingshui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346477/ https://www.ncbi.nlm.nih.gov/pubmed/37447905 http://dx.doi.org/10.3390/s23136057 |
Ejemplares similares
-
Development and application of random forest regression soft sensor model for treating domestic wastewater in a sequencing batch reactor
por: Cheng, Qiu, et al.
Publicado: (2023) -
Splitting on categorical predictors in random forests
por: Wright, Marvin N., et al.
Publicado: (2019) -
Optimizing passive acoustic sampling of bats in forests
por: Froidevaux, Jérémy S P, et al.
Publicado: (2014) -
Soft Radio-Frequency Identification Sensors: Wireless Long-Range Strain Sensors Using Radio-Frequency Identification
por: Teng, Lijun, et al.
Publicado: (2019) -
Torsional Ultrasound Sensor Optimization for Soft Tissue Characterization
por: Melchor, Juan, et al.
Publicado: (2017)