Cargando…
Towards Adversarial Robustness for Multi-Mode Data through Metric Learning
Adversarial attacks have become one of the most serious security issues in widely used deep neural networks. Even though real-world datasets usually have large intra-variations or multiple modes, most adversarial defense methods, such as adversarial training, which is currently one of the most effec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346491/ https://www.ncbi.nlm.nih.gov/pubmed/37448021 http://dx.doi.org/10.3390/s23136173 |
Sumario: | Adversarial attacks have become one of the most serious security issues in widely used deep neural networks. Even though real-world datasets usually have large intra-variations or multiple modes, most adversarial defense methods, such as adversarial training, which is currently one of the most effective defense methods, mainly focus on the single-mode setting and thus fail to capture the full data representation to defend against adversarial attacks. To confront this challenge, we propose a novel multi-prototype metric learning regularization for adversarial training which can effectively enhance the defense capability of adversarial training by preventing the latent representation of the adversarial example changing a lot from its clean one. With extensive experiments on CIFAR10, CIFAR100, MNIST, and Tiny ImageNet, the evaluation results show the proposed method improves the performance of different state-of-the-art adversarial training methods without additional computational cost. Furthermore, besides Tiny ImageNet, in the multi-prototype CIFAR10 and CIFAR100 where we reorganize the whole datasets of CIFAR10 and CIFAR100 into two and ten classes, respectively, the proposed method outperforms the state-of-the-art approach by 2.22% and 1.65%, respectively. Furthermore, the proposed multi-prototype method also outperforms its single-prototype version and other commonly used deep metric learning approaches as regularization for adversarial training and thus further demonstrates its effectiveness. |
---|