Cargando…
Research on Small Sample Multi-Target Grasping Technology Based on Transfer Learning
This article proposes a CBAM-ASPP-SqueezeNet model based on the attention mechanism and atrous spatial pyramid pooling (CBAM-ASPP) to solve the problem of robot multi-target grasping detection. Firstly, the paper establishes and expends a multi-target grasping dataset, as well as introduces and uses...
Autores principales: | Zhao, Bin, Wu, Chengdong, Zou, Fengshan, Zhang, Xuejiao, Sun, Ruohuai, Jiang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346530/ https://www.ncbi.nlm.nih.gov/pubmed/37447680 http://dx.doi.org/10.3390/s23135826 |
Ejemplares similares
-
Grasping learning, optimization, and knowledge transfer in the robotics field
por: Pozzi, Luca, et al.
Publicado: (2022) -
Interlimb Transfer of Grasp Orientation is Asymmetrical
por: Frak, Victor, et al.
Publicado: (2006) -
Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS
por: Yin, Guowei, et al.
Publicado: (2023) -
Learning to grasp and extract affordances: the Integrated Learning of Grasps and Affordances (ILGA) model
por: Bonaiuto, James, et al.
Publicado: (2015) -
Research on Robot Grasping Based on Deep Learning for Real-Life Scenarios
por: Hu, Jie, et al.
Publicado: (2023)