Cargando…
A DDoS Detection Method Based on Feature Engineering and Machine Learning in Software-Defined Networks
Distributed denial-of-service (DDoS) attacks pose a significant cybersecurity threat to software-defined networks (SDNs). This paper proposes a feature-engineering- and machine-learning-based approach to detect DDoS attacks in SDNs. First, the CSE-CIC-IDS2018 dataset was cleaned and normalized, and...
Autores principales: | Liu, Zhenpeng, Wang, Yihang, Feng, Fan, Liu, Yifan, Li, Zelin, Shan, Yawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346601/ https://www.ncbi.nlm.nih.gov/pubmed/37448025 http://dx.doi.org/10.3390/s23136176 |
Ejemplares similares
-
KS-DDoS: Kafka streams-based classification approach for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
A Systematic Literature Review on Machine Learning and Deep Learning Approaches for Detecting DDoS Attacks in Software-Defined Networking
por: Bahashwan, Abdullah Ahmed, et al.
Publicado: (2023) -
SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
A hybrid machine learning approach for detecting unprecedented DDoS attacks
por: Najafimehr, Mohammad, et al.
Publicado: (2022) -
DDoS attacks hit hard and fast
Publicado: (2020)