Cargando…

Data Fusion for Cross-Domain Real-Time Object Detection on the Edge

We investigate an edge-computing scenario for robot control, where two similar neural networks are running on one computational node. We test the feasibility of using a single object-detection model (YOLOv5) with the benefit of reduced computational resources against the potentially more accurate in...

Descripción completa

Detalles Bibliográficos
Autores principales: Kovalenko, Mykyta, Przewozny, David, Eisert, Peter, Bosse, Sebastian, Chojecki, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346650/
https://www.ncbi.nlm.nih.gov/pubmed/37447986
http://dx.doi.org/10.3390/s23136138
_version_ 1785073363230654464
author Kovalenko, Mykyta
Przewozny, David
Eisert, Peter
Bosse, Sebastian
Chojecki, Paul
author_facet Kovalenko, Mykyta
Przewozny, David
Eisert, Peter
Bosse, Sebastian
Chojecki, Paul
author_sort Kovalenko, Mykyta
collection PubMed
description We investigate an edge-computing scenario for robot control, where two similar neural networks are running on one computational node. We test the feasibility of using a single object-detection model (YOLOv5) with the benefit of reduced computational resources against the potentially more accurate independent and specialized models. Our results show that using one single convolutional neural network (for object detection and hand-gesture classification) instead of two separate ones can reduce resource usage by almost [Formula: see text]. For many classes, we observed an increase in accuracy when using the model trained with more labels. For small datasets (a few hundred instances per label), we found that it is advisable to add labels with many instances from another dataset to increase detection accuracy.
format Online
Article
Text
id pubmed-10346650
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103466502023-07-15 Data Fusion for Cross-Domain Real-Time Object Detection on the Edge Kovalenko, Mykyta Przewozny, David Eisert, Peter Bosse, Sebastian Chojecki, Paul Sensors (Basel) Article We investigate an edge-computing scenario for robot control, where two similar neural networks are running on one computational node. We test the feasibility of using a single object-detection model (YOLOv5) with the benefit of reduced computational resources against the potentially more accurate independent and specialized models. Our results show that using one single convolutional neural network (for object detection and hand-gesture classification) instead of two separate ones can reduce resource usage by almost [Formula: see text]. For many classes, we observed an increase in accuracy when using the model trained with more labels. For small datasets (a few hundred instances per label), we found that it is advisable to add labels with many instances from another dataset to increase detection accuracy. MDPI 2023-07-04 /pmc/articles/PMC10346650/ /pubmed/37447986 http://dx.doi.org/10.3390/s23136138 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kovalenko, Mykyta
Przewozny, David
Eisert, Peter
Bosse, Sebastian
Chojecki, Paul
Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_full Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_fullStr Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_full_unstemmed Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_short Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
title_sort data fusion for cross-domain real-time object detection on the edge
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346650/
https://www.ncbi.nlm.nih.gov/pubmed/37447986
http://dx.doi.org/10.3390/s23136138
work_keys_str_mv AT kovalenkomykyta datafusionforcrossdomainrealtimeobjectdetectionontheedge
AT przewoznydavid datafusionforcrossdomainrealtimeobjectdetectionontheedge
AT eisertpeter datafusionforcrossdomainrealtimeobjectdetectionontheedge
AT bossesebastian datafusionforcrossdomainrealtimeobjectdetectionontheedge
AT chojeckipaul datafusionforcrossdomainrealtimeobjectdetectionontheedge