Cargando…
Data Fusion for Cross-Domain Real-Time Object Detection on the Edge
We investigate an edge-computing scenario for robot control, where two similar neural networks are running on one computational node. We test the feasibility of using a single object-detection model (YOLOv5) with the benefit of reduced computational resources against the potentially more accurate in...
Autores principales: | Kovalenko, Mykyta, Przewozny, David, Eisert, Peter, Bosse, Sebastian, Chojecki, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346650/ https://www.ncbi.nlm.nih.gov/pubmed/37447986 http://dx.doi.org/10.3390/s23136138 |
Ejemplares similares
-
Assessing the Value of Multimodal Interfaces: A Study on Human–Machine Interaction in Weld Inspection Workstations
por: Chojecki, Paul, et al.
Publicado: (2023) -
Exploring RGB+Depth Fusion for Real-Time Object Detection
por: Ophoff, Tanguy, et al.
Publicado: (2019) -
Lightweight and Energy-Efficient Deep Learning Accelerator for Real-Time Object Detection on Edge Devices
por: Kim, Kyungho, et al.
Publicado: (2023) -
Real time object detection using LiDAR and camera fusion for autonomous driving
por: Liu, Haibin, et al.
Publicado: (2023) -
Simplification of Deep Neural Network-Based Object Detector for Real-Time Edge Computing
por: Choi, Kyoungtaek, et al.
Publicado: (2023)