Cargando…
Application of Machine Learning Algorithms for Tool Condition Monitoring in Milling Chipboard Process
In this article, we present a novel approach to tool condition monitoring in the chipboard milling process using machine learning algorithms. The presented study aims to address the challenges of detecting tool wear and predicting tool failure in real time, which can significantly improve the effici...
Autores principales: | Przybyś-Małaczek, Agata, Antoniuk, Izabella, Szymanowski, Karol, Kruk, Michał, Kurek, Jarosław |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346670/ https://www.ncbi.nlm.nih.gov/pubmed/37447700 http://dx.doi.org/10.3390/s23135850 |
Ejemplares similares
-
Advanced Feature Extraction Methods from Images of Drillings in Melamine Faced Chipboard for Automatic Diagnosis of Drill Wear
por: Antoniuk, Izabella, et al.
Publicado: (2023) -
Improved Drill State Recognition during Milling Process Using Artificial Intelligence
por: Kurek, Jarosław, et al.
Publicado: (2023) -
Multiclass Image Classification Using GANs and CNN Based on Holes Drilled in Laminated Chipboard
por: Wieczorek, Grzegorz, et al.
Publicado: (2021) -
Decision Confidence Assessment in Multi-Class Classification
por: Bukowski, Michał, et al.
Publicado: (2021) -
Application of Siamese Networks to the Recognition of the Drill Wear State Based on Images of Drilled Holes
por: Kurek, Jarosław, et al.
Publicado: (2020)