Cargando…
Sage, Rosemary, and Bay Laurel Hydrodistillation By-Products as a Source of Bioactive Compounds
Essential oils from Mediterranean wild plants are widely used, but the hydrodistillation residues produced in parallel with these essential oils are significantly understudied and underexploited. Since there are only fragmentary data in the literature, we have, for the first time, systematically ana...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346681/ https://www.ncbi.nlm.nih.gov/pubmed/37446955 http://dx.doi.org/10.3390/plants12132394 |
Sumario: | Essential oils from Mediterranean wild plants are widely used, but the hydrodistillation residues produced in parallel with these essential oils are significantly understudied and underexploited. Since there are only fragmentary data in the literature, we have, for the first time, systematically analyzed the chemical composition of the by-products obtained after hydrodistillation of sage, bay laurel, and rosemary leaves, i.e., hydrolates, water residues, and solid residues. The chemical composition of the hydrolates changed compared to their respective essential oils towards the dominance of more hydrophilic, oxygenated compounds, such as camphor in sage, 1,8-cineole in bay laurel, and berbenone in rosemary. However, some compounds, mostly sesquiterpenes, which were present in considerable amounts in essential oils, were absent or only present in very small amounts in the hydrolates. Furthermore, both the water and the solid residues were rich in polyphenols, such as procyanidins in bay laurel and rosmarinic acid in rosemary and sage. In conclusion, we demonstrate the valuable chemical composition of sage, rosemary, and bay laurel hydrodistillation by-products and discuss a wide range of their possible applications. |
---|