Cargando…
Early Identification of Root Damages Caused by Western Corn Rootworms Using a Minimally Invasive Root Phenotyping Robot—MISIRoot
Western corn rootworm (WCR) is one of the most devastating corn rootworm species in North America because of its ability to cause severe production loss and grain quality damage. To control the loss, it is important to identify the infection of WCR at an early stage. Because the root system is the e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346699/ https://www.ncbi.nlm.nih.gov/pubmed/37447843 http://dx.doi.org/10.3390/s23135995 |
Sumario: | Western corn rootworm (WCR) is one of the most devastating corn rootworm species in North America because of its ability to cause severe production loss and grain quality damage. To control the loss, it is important to identify the infection of WCR at an early stage. Because the root system is the earliest feeding source of the WCR at the larvae stage, assessing the direct damage in the root system is crucial to achieving early detection. Most of the current methods still necessitate uprooting the entire plant, which could cause permanent destruction and a loss of the original root’s structural information. To measure the root damages caused by WCR non-destructively, this study utilized MISIRoot, a minimally invasive and in situ automatic plant root phenotyping robot to collect not only high-resolution images but also 3D positions of the roots without uprooting. To identify roots in the images and to study how the damages were distributed in different types of roots, a deep convolution neural network model was trained to differentiate the relatively thick and thin roots. In addition, a color camera was used to capture the above-ground morphological features, such as the leaf color, plant height, and side-view leaf area. To check if the plant shoot had any visible symptoms in the inoculated group compared to the control group, several vegetation indices were calculated based on the RGB color. Additionally, the shoot morphological features were fed into a PLS-DA model to differentiate the two groups. Results showed that none of the above-ground features or models output a statistically significant difference between the two groups at the 95% confidence level. On the contrary, many of the root structural features measured using MISIRoot could successfully differentiate the two groups with the smallest t-test p-value of 1.5791 × 10(−6). The promising outcomes were solid proof of the effectiveness of MISIRoot as a potential solution for identifying WCR infestations before the plant shoot showed significant symptoms. |
---|