Cargando…
k-Fold Cross-Validation Can Significantly Over-Estimate True Classification Accuracy in Common EEG-Based Passive BCI Experimental Designs: An Empirical Investigation
In passive BCI studies, a common approach is to collect data from mental states of interest during relatively long trials and divide these trials into shorter “epochs” to serve as individual samples in classification. While it is known that using k-fold cross-validation (CV) in this scenario can res...
Autores principales: | White, Jacob, Power, Sarah D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346713/ https://www.ncbi.nlm.nih.gov/pubmed/37447926 http://dx.doi.org/10.3390/s23136077 |
Ejemplares similares
-
Toward a Hybrid Passive BCI for the Modulation of Sustained Attention Using EEG and fNIRS
por: Karran, Alexander J., et al.
Publicado: (2019) -
Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASD
por: Eldeeb, Safaa, et al.
Publicado: (2021) -
EEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures
por: Mondini, Valeria, et al.
Publicado: (2016) -
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
Realizing the Application of EEG Modeling in BCI Classification: Based on a Conditional GAN Converter
por: Zhang, Xiaodong, et al.
Publicado: (2021)