Cargando…
Research on Adaptive 1DCNN Network Intrusion Detection Technology Based on BSGM Mixed Sampling
The development of internet technology has brought us benefits, but at the same time, there has been a surge in network attack incidents, posing a serious threat to network security. In the real world, the amount of attack data is much smaller than normal data, leading to a severe class imbalance pr...
Autores principales: | Ma, Wei, Gou, Chao, Hou, Yunyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346877/ https://www.ncbi.nlm.nih.gov/pubmed/37448055 http://dx.doi.org/10.3390/s23136206 |
Ejemplares similares
-
Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN)
por: Alom, Zahangir, et al.
Publicado: (2022) -
Parking Slot Detection on Around-View Images Using DCNN
por: Li, Wei, et al.
Publicado: (2020) -
BEMD-3DCNN-based method for COVID-19 detection
por: Riahi, Ali, et al.
Publicado: (2022) -
Network intrusion detection
por: Northcutt, Stephen, et al.
Publicado: (2003) -
Intrusion Detection Networks
por: Fung, Carol, et al.
Publicado: (2013)