Cargando…
Optimizing Time Resolution Electronics for DMAPs
Depleted Monolithic Active Pixel Sensors (DMAPSs) are foreseen as an interesting choice for future high-energy physics experiments, mainly because of the reduced fabrication costs. However, they generally offer limited time resolution due to the stringent requirements of area and power consumption i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346900/ https://www.ncbi.nlm.nih.gov/pubmed/37447694 http://dx.doi.org/10.3390/s23135844 |
Sumario: | Depleted Monolithic Active Pixel Sensors (DMAPSs) are foreseen as an interesting choice for future high-energy physics experiments, mainly because of the reduced fabrication costs. However, they generally offer limited time resolution due to the stringent requirements of area and power consumption imposed by the targeted spatial resolution. This work describes a methodology to optimize the design of time-to-digital converter (TDC)-based timing electronics that takes advantage of the asymmetrical shape of the pulse at the output of the analog front-end (AFE). Following that methodology, a power and area efficient implementation fully compatible with the RD50-MPW3 solution is proposed. Simulation results show that the proposed solution offers a time resolution of 2.08 ns for a range of energies from 1000 e(−) to 20,000 e(−), with minimum area and zero quiescent in-pixel power consumption. |
---|