Cargando…
Three-Dimensional Image Transmission of Integral Imaging through Wireless MIMO Channel
For the reconstruction of high-resolution 3D digital content in integral imaging, an efficient wireless 3D image transmission system is required to convey a large number of elemental images without a communication bottleneck. To support a high transmission rate, we herein propose a novel wireless th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346909/ https://www.ncbi.nlm.nih.gov/pubmed/37448002 http://dx.doi.org/10.3390/s23136154 |
Sumario: | For the reconstruction of high-resolution 3D digital content in integral imaging, an efficient wireless 3D image transmission system is required to convey a large number of elemental images without a communication bottleneck. To support a high transmission rate, we herein propose a novel wireless three-dimensional (3D) image transmission and reception strategy based on the multiple-input multiple-output (MIMO) technique. By exploiting the spatial multiplexing capability, multiple elemental images are transmitted simultaneously through the wireless MIMO channel, and recovered with a linear receiver such as matched filter, zero forcing, or minimum mean squared error combiners. Using the recovered elemental images, a 3D image can be reconstructed using volumetric computational reconstruction (VCR) with non-uniform shifting pixels. Although the received elemental images are corrupted by the wireless channel and inter-stream interference, the averaging effect of the VCR can improve the visual quality of the reconstructed 3D images. The numerical results validate that the proposed system can achieve excellent 3D reconstruction performance in terms of the visual quality and peak sidelobe ratio though a large number of elemental images are transmitted simultaneously over the wireless MIMO channel. |
---|