Cargando…
Pashto Handwritten Invariant Character Trajectory Prediction Using a Customized Deep Learning Technique
Before the 19th century, all communication and official records relied on handwritten documents, cherished as valuable artefacts by different ethnic groups. While significant efforts have been made to automate the transcription of major languages like English, French, Arabic, and Chinese, there has...
Autores principales: | Khaliq, Fazli, Shabir, Muhammad, Khan, Inayat, Ahmad, Shafiq, Usman, Muhammad, Zubair, Muhammad, Huda, Shamsul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346912/ https://www.ncbi.nlm.nih.gov/pubmed/37447909 http://dx.doi.org/10.3390/s23136060 |
Ejemplares similares
-
Recognition of Pashto Handwritten Characters Based on Deep Learning
por: Amin, Muhammad Sadiq, et al.
Publicado: (2020) -
Robust Optical Recognition of Cursive Pashto Script Using Scale, Rotation and Location Invariant Approach
por: Ahmad, Riaz, et al.
Publicado: (2015) -
Pashto isolated digits recognition using deep convolutional neural network
por: Zada, Bakht, et al.
Publicado: (2020) -
The proximate unit in Chinese handwritten character production
por: Chen, Jenn-Yeu, et al.
Publicado: (2013) -
Deep Learning-Based Child Handwritten Arabic Character Recognition and Handwriting Discrimination
por: Alwagdani, Maram Saleh, et al.
Publicado: (2023)