Cargando…

Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric

Magnetic field sensors using magnetoelectric (ME) effects in planar ferromagnetic-piezoelectric heterostructures convert a magnetic field into an output voltage. The parameters of ME sensors are determined by characteristics of the magnetic constituent. In this work, the low-frequency ME effects in...

Descripción completa

Detalles Bibliográficos
Autores principales: Burdin, Dmitri A., Chashin, Dmitri V., Ekonomov, Nikolai A., Fetisov, Leonid Y., Preobrazhensky, Vladimir L., Fetisov, Yuri K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346928/
https://www.ncbi.nlm.nih.gov/pubmed/37447750
http://dx.doi.org/10.3390/s23135901
_version_ 1785073429476540416
author Burdin, Dmitri A.
Chashin, Dmitri V.
Ekonomov, Nikolai A.
Fetisov, Leonid Y.
Preobrazhensky, Vladimir L.
Fetisov, Yuri K.
author_facet Burdin, Dmitri A.
Chashin, Dmitri V.
Ekonomov, Nikolai A.
Fetisov, Leonid Y.
Preobrazhensky, Vladimir L.
Fetisov, Yuri K.
author_sort Burdin, Dmitri A.
collection PubMed
description Magnetic field sensors using magnetoelectric (ME) effects in planar ferromagnetic-piezoelectric heterostructures convert a magnetic field into an output voltage. The parameters of ME sensors are determined by characteristics of the magnetic constituent. In this work, the low-frequency ME effects in heterostructures comprising a layer of antiferromagnetic hematite α-Fe(2)O(3) crystal with easy-plane anisotropy and a piezoelectric layer are studied. The effects arise due to a combination of magnetostriction and piezoelectricity because of mechanical coupling of the layers. The field dependences of magnetization and magnetostriction of the hematite crystal are measured. The resonant ME effects in the hematite-piezopolymer and hematite-piezoceramic structures are studied. The strong coupling between magnetic and acoustic subsystems of hematite results in a tuning of the acoustic resonance frequency by the magnetic field. For the hematite layer, the frequency tuning was found to be ~37% with an increase in the bias field up to 600 Oe. For the hematite-PVDF heterostructure, the frequency tuning reached ~24% and the ME coefficient was 58 mV/(Oe∙cm). For the hematite-piezoceramic heterostructure, the frequency tuning was ~4.4% and the ME coefficient 4.8 V/(Oe∙cm). Efficient generation of the second voltage harmonic in the hematite-piezoceramic heterostructure was observed.
format Online
Article
Text
id pubmed-10346928
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103469282023-07-15 Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric Burdin, Dmitri A. Chashin, Dmitri V. Ekonomov, Nikolai A. Fetisov, Leonid Y. Preobrazhensky, Vladimir L. Fetisov, Yuri K. Sensors (Basel) Article Magnetic field sensors using magnetoelectric (ME) effects in planar ferromagnetic-piezoelectric heterostructures convert a magnetic field into an output voltage. The parameters of ME sensors are determined by characteristics of the magnetic constituent. In this work, the low-frequency ME effects in heterostructures comprising a layer of antiferromagnetic hematite α-Fe(2)O(3) crystal with easy-plane anisotropy and a piezoelectric layer are studied. The effects arise due to a combination of magnetostriction and piezoelectricity because of mechanical coupling of the layers. The field dependences of magnetization and magnetostriction of the hematite crystal are measured. The resonant ME effects in the hematite-piezopolymer and hematite-piezoceramic structures are studied. The strong coupling between magnetic and acoustic subsystems of hematite results in a tuning of the acoustic resonance frequency by the magnetic field. For the hematite layer, the frequency tuning was found to be ~37% with an increase in the bias field up to 600 Oe. For the hematite-PVDF heterostructure, the frequency tuning reached ~24% and the ME coefficient was 58 mV/(Oe∙cm). For the hematite-piezoceramic heterostructure, the frequency tuning was ~4.4% and the ME coefficient 4.8 V/(Oe∙cm). Efficient generation of the second voltage harmonic in the hematite-piezoceramic heterostructure was observed. MDPI 2023-06-25 /pmc/articles/PMC10346928/ /pubmed/37447750 http://dx.doi.org/10.3390/s23135901 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Burdin, Dmitri A.
Chashin, Dmitri V.
Ekonomov, Nikolai A.
Fetisov, Leonid Y.
Preobrazhensky, Vladimir L.
Fetisov, Yuri K.
Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric
title Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric
title_full Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric
title_fullStr Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric
title_full_unstemmed Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric
title_short Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric
title_sort low-frequency resonant magnetoelectric effects in layered heterostructures antiferromagnet-piezoelectric
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346928/
https://www.ncbi.nlm.nih.gov/pubmed/37447750
http://dx.doi.org/10.3390/s23135901
work_keys_str_mv AT burdindmitria lowfrequencyresonantmagnetoelectriceffectsinlayeredheterostructuresantiferromagnetpiezoelectric
AT chashindmitriv lowfrequencyresonantmagnetoelectriceffectsinlayeredheterostructuresantiferromagnetpiezoelectric
AT ekonomovnikolaia lowfrequencyresonantmagnetoelectriceffectsinlayeredheterostructuresantiferromagnetpiezoelectric
AT fetisovleonidy lowfrequencyresonantmagnetoelectriceffectsinlayeredheterostructuresantiferromagnetpiezoelectric
AT preobrazhenskyvladimirl lowfrequencyresonantmagnetoelectriceffectsinlayeredheterostructuresantiferromagnetpiezoelectric
AT fetisovyurik lowfrequencyresonantmagnetoelectriceffectsinlayeredheterostructuresantiferromagnetpiezoelectric