Cargando…
Crop Disease Identification by Fusing Multiscale Convolution and Vision Transformer
With the development of smart agriculture, deep learning is playing an increasingly important role in crop disease recognition. The existing crop disease recognition models are mainly based on convolutional neural networks (CNN). Although traditional CNN models have excellent performance in modeling...
Autores principales: | Zhu, Dingju, Tan, Jianbin, Wu, Chao, Yung, KaiLeung, Ip, Andrew W. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346931/ https://www.ncbi.nlm.nih.gov/pubmed/37447864 http://dx.doi.org/10.3390/s23136015 |
Ejemplares similares
-
Landslide Susceptibility Mapping by Fusing Convolutional Neural Networks and Vision Transformer
por: Bao, Shuai, et al.
Publicado: (2022) -
The Multiscale Surface Vision Transformer
por: Dahan, Simon, et al.
Publicado: (2023) -
PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation
por: Chen, Danny, et al.
Publicado: (2022) -
Image Fusion and Stylization Processing Based on Multiscale Transformation and Convolutional Neural Network
por: Xu, Qingzeng
Publicado: (2022) -
An Adaptive Infrared Small-Target-Detection Fusion Algorithm Based on Multiscale Local Gradient Contrast for Remote Sensing
por: Chen, Juan, et al.
Publicado: (2023)