Cargando…
Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications
Autonomous vehicles (AVs) rely on advanced sensory systems, such as Light Detection and Ranging (LiDAR), to function seamlessly in intricate and dynamic environments. LiDAR produces highly accurate 3D point clouds, which are vital for the detection, classification, and tracking of multiple targets....
Autores principales: | Adnan, Muhammad, Slavic, Giulia, Martin Gomez, David, Marcenaro, Lucio, Regazzoni, Carlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346986/ https://www.ncbi.nlm.nih.gov/pubmed/37447967 http://dx.doi.org/10.3390/s23136119 |
Ejemplares similares
-
Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
por: Xie, Xing, et al.
Publicado: (2023) -
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
por: Cho, Sungjin, et al.
Publicado: (2020) -
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021) -
Aerial LiDAR Data Augmentation for Direct Point-Cloud Visualisation
por: Bohak, Ciril, et al.
Publicado: (2020) -
PLIN: A Network for Pseudo-LiDAR Point Cloud Interpolation
por: Liu, Haojie, et al.
Publicado: (2020)