Cargando…
A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors
Gait phase recognition is of great importance in the development of rehabilitation devices. The advantages of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) are combined (LSTM-CNN) in this paper, then a gait phase recognition method based on LSTM-CNN neural network model is pro...
Autores principales: | Liu, Kun, Liu, Yong, Ji, Shuo, Gao, Chi, Zhang, Shizhong, Fu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347001/ https://www.ncbi.nlm.nih.gov/pubmed/37447755 http://dx.doi.org/10.3390/s23135905 |
Ejemplares similares
-
Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor
Publicado: (2022) -
A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors
por: Huang, Haohua, et al.
Publicado: (2021) -
Multi-Sensor Data Fusion and CNN-LSTM Model for Human Activity Recognition System
por: Zhou, Haiyang, et al.
Publicado: (2023) -
Ambulatory Human Gait Phase Detection Using Wearable Inertial Sensors and Hidden Markov Model
por: Liu, Long, et al.
Publicado: (2021) -
Towards Wearable-Inertial-Sensor-Based Gait Posture Evaluation for Subjects with Unbalanced Gaits
por: Qiu, Sen, et al.
Publicado: (2020)