Cargando…

Structural Monitoring of a Large-Span Arch Bridge Using Customized Sensors

Due to the increasing importance of the continuous monitoring of Civil Structures, this research aims to take advantage of new solutions of measurement systems and sensors in the Structural Health Monitoring of bridges, using the reinforced concrete arch Arrábida Bridge as a case study. With the sup...

Descripción completa

Detalles Bibliográficos
Autores principales: Ietka, Isabelle, Moutinho, Carlos, Pereira, Sérgio, Cunha, Álvaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347004/
https://www.ncbi.nlm.nih.gov/pubmed/37447819
http://dx.doi.org/10.3390/s23135971
Descripción
Sumario:Due to the increasing importance of the continuous monitoring of Civil Structures, this research aims to take advantage of new solutions of measurement systems and sensors in the Structural Health Monitoring of bridges, using the reinforced concrete arch Arrábida Bridge as a case study. With the support of customized sensors, this work starts by performing preliminary ambient vibration tests on Arrábida Bridge, aiming at the identification of the natural frequencies and respective vibration modes of the deck. Then, the measurement campaigns carried over time are described, which involved different types of customized sensors, namely, accelerometers, temperature sensors and displacement sensors. Based on the signals collected by these devices, some preliminary analyses were performed. The results show that the temperature measured at the deck sections presents different amplitudes and phase shifts when compared to the temperature measured at the arch sections. Moreover, using the temperature measurements, it is possible to estimate with good accuracy the displacements in the expansion joints of the bridge. It was also observed that the displacements in these joints, although being conditioned by the temperature effects, are also marked by a dynamic component arising from the traffic loads over the deck. The observation of this phenomenon is an innovative aspect found in this investigation, which can be used in the future to characterize the traffic loads on the structure.