Cargando…
CBIR-SAR System Using Stochastic Distance
This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness ([Formula: see text]) and scale ([Formula: see text])...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347088/ https://www.ncbi.nlm.nih.gov/pubmed/37447929 http://dx.doi.org/10.3390/s23136080 |
_version_ | 1785073466844643328 |
---|---|
author | Sousa, Alcilene Dalília Silva, Pedro Henrique dos Santos Silva, Romuere Rodrigues Veloso Rodrigues, Francisco Alixandre Àvila Medeiros, Fatima Nelsizeuma Sombra |
author_facet | Sousa, Alcilene Dalília Silva, Pedro Henrique dos Santos Silva, Romuere Rodrigues Veloso Rodrigues, Francisco Alixandre Àvila Medeiros, Fatima Nelsizeuma Sombra |
author_sort | Sousa, Alcilene Dalília |
collection | PubMed |
description | This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness ([Formula: see text]) and scale ([Formula: see text]) parameters of the [Formula: see text] distribution that models SAR data in intensity. The parameters of the model were estimated using the Maximum Likelihood Estimation and the fast approach of the Log-Cumulants method. Second, using the triangular distance, CBIR-SAR evaluates the similarity between a query image and images in the database. The stochastic distance can identify the most similar regions according to the image features, which are the estimated parameters of the data model. Third, the performance of our proposal was evaluated by applying the Mean Average Precision (MAP) measure and considering clippings from three radar sensors, i.e., UAVSAR, OrbiSaR-2, and ALOS PALSAR. The CBIR-SAR results for synthetic images achieved the highest MAP value, retrieving extremely heterogeneous regions. Regarding the real SAR images, CBIR-SAR achieved MAP values above 0.833 for all polarization channels for image samples of forest (UAVSAR) and urban areas (ORBISAR). Our results confirmed that the proposed method is sensitive to the degree of texture, and hence, it relies on good estimates. They are inputs to the stochastic distance for effective image retrieval. |
format | Online Article Text |
id | pubmed-10347088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103470882023-07-15 CBIR-SAR System Using Stochastic Distance Sousa, Alcilene Dalília Silva, Pedro Henrique dos Santos Silva, Romuere Rodrigues Veloso Rodrigues, Francisco Alixandre Àvila Medeiros, Fatima Nelsizeuma Sombra Sensors (Basel) Communication This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness ([Formula: see text]) and scale ([Formula: see text]) parameters of the [Formula: see text] distribution that models SAR data in intensity. The parameters of the model were estimated using the Maximum Likelihood Estimation and the fast approach of the Log-Cumulants method. Second, using the triangular distance, CBIR-SAR evaluates the similarity between a query image and images in the database. The stochastic distance can identify the most similar regions according to the image features, which are the estimated parameters of the data model. Third, the performance of our proposal was evaluated by applying the Mean Average Precision (MAP) measure and considering clippings from three radar sensors, i.e., UAVSAR, OrbiSaR-2, and ALOS PALSAR. The CBIR-SAR results for synthetic images achieved the highest MAP value, retrieving extremely heterogeneous regions. Regarding the real SAR images, CBIR-SAR achieved MAP values above 0.833 for all polarization channels for image samples of forest (UAVSAR) and urban areas (ORBISAR). Our results confirmed that the proposed method is sensitive to the degree of texture, and hence, it relies on good estimates. They are inputs to the stochastic distance for effective image retrieval. MDPI 2023-07-01 /pmc/articles/PMC10347088/ /pubmed/37447929 http://dx.doi.org/10.3390/s23136080 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Sousa, Alcilene Dalília Silva, Pedro Henrique dos Santos Silva, Romuere Rodrigues Veloso Rodrigues, Francisco Alixandre Àvila Medeiros, Fatima Nelsizeuma Sombra CBIR-SAR System Using Stochastic Distance |
title | CBIR-SAR System Using Stochastic Distance |
title_full | CBIR-SAR System Using Stochastic Distance |
title_fullStr | CBIR-SAR System Using Stochastic Distance |
title_full_unstemmed | CBIR-SAR System Using Stochastic Distance |
title_short | CBIR-SAR System Using Stochastic Distance |
title_sort | cbir-sar system using stochastic distance |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347088/ https://www.ncbi.nlm.nih.gov/pubmed/37447929 http://dx.doi.org/10.3390/s23136080 |
work_keys_str_mv | AT sousaalcilenedalilia cbirsarsystemusingstochasticdistance AT silvapedrohenriquedossantos cbirsarsystemusingstochasticdistance AT silvaromuererodriguesveloso cbirsarsystemusingstochasticdistance AT rodriguesfranciscoalixandreavila cbirsarsystemusingstochasticdistance AT medeirosfatimanelsizeumasombra cbirsarsystemusingstochasticdistance |