Cargando…

CBIR-SAR System Using Stochastic Distance

This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness ([Formula: see text]) and scale ([Formula: see text])...

Descripción completa

Detalles Bibliográficos
Autores principales: Sousa, Alcilene Dalília, Silva, Pedro Henrique dos Santos, Silva, Romuere Rodrigues Veloso, Rodrigues, Francisco Alixandre Àvila, Medeiros, Fatima Nelsizeuma Sombra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347088/
https://www.ncbi.nlm.nih.gov/pubmed/37447929
http://dx.doi.org/10.3390/s23136080
_version_ 1785073466844643328
author Sousa, Alcilene Dalília
Silva, Pedro Henrique dos Santos
Silva, Romuere Rodrigues Veloso
Rodrigues, Francisco Alixandre Àvila
Medeiros, Fatima Nelsizeuma Sombra
author_facet Sousa, Alcilene Dalília
Silva, Pedro Henrique dos Santos
Silva, Romuere Rodrigues Veloso
Rodrigues, Francisco Alixandre Àvila
Medeiros, Fatima Nelsizeuma Sombra
author_sort Sousa, Alcilene Dalília
collection PubMed
description This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness ([Formula: see text]) and scale ([Formula: see text]) parameters of the [Formula: see text] distribution that models SAR data in intensity. The parameters of the model were estimated using the Maximum Likelihood Estimation and the fast approach of the Log-Cumulants method. Second, using the triangular distance, CBIR-SAR evaluates the similarity between a query image and images in the database. The stochastic distance can identify the most similar regions according to the image features, which are the estimated parameters of the data model. Third, the performance of our proposal was evaluated by applying the Mean Average Precision (MAP) measure and considering clippings from three radar sensors, i.e., UAVSAR, OrbiSaR-2, and ALOS PALSAR. The CBIR-SAR results for synthetic images achieved the highest MAP value, retrieving extremely heterogeneous regions. Regarding the real SAR images, CBIR-SAR achieved MAP values above 0.833 for all polarization channels for image samples of forest (UAVSAR) and urban areas (ORBISAR). Our results confirmed that the proposed method is sensitive to the degree of texture, and hence, it relies on good estimates. They are inputs to the stochastic distance for effective image retrieval.
format Online
Article
Text
id pubmed-10347088
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103470882023-07-15 CBIR-SAR System Using Stochastic Distance Sousa, Alcilene Dalília Silva, Pedro Henrique dos Santos Silva, Romuere Rodrigues Veloso Rodrigues, Francisco Alixandre Àvila Medeiros, Fatima Nelsizeuma Sombra Sensors (Basel) Communication This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness ([Formula: see text]) and scale ([Formula: see text]) parameters of the [Formula: see text] distribution that models SAR data in intensity. The parameters of the model were estimated using the Maximum Likelihood Estimation and the fast approach of the Log-Cumulants method. Second, using the triangular distance, CBIR-SAR evaluates the similarity between a query image and images in the database. The stochastic distance can identify the most similar regions according to the image features, which are the estimated parameters of the data model. Third, the performance of our proposal was evaluated by applying the Mean Average Precision (MAP) measure and considering clippings from three radar sensors, i.e., UAVSAR, OrbiSaR-2, and ALOS PALSAR. The CBIR-SAR results for synthetic images achieved the highest MAP value, retrieving extremely heterogeneous regions. Regarding the real SAR images, CBIR-SAR achieved MAP values above 0.833 for all polarization channels for image samples of forest (UAVSAR) and urban areas (ORBISAR). Our results confirmed that the proposed method is sensitive to the degree of texture, and hence, it relies on good estimates. They are inputs to the stochastic distance for effective image retrieval. MDPI 2023-07-01 /pmc/articles/PMC10347088/ /pubmed/37447929 http://dx.doi.org/10.3390/s23136080 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Sousa, Alcilene Dalília
Silva, Pedro Henrique dos Santos
Silva, Romuere Rodrigues Veloso
Rodrigues, Francisco Alixandre Àvila
Medeiros, Fatima Nelsizeuma Sombra
CBIR-SAR System Using Stochastic Distance
title CBIR-SAR System Using Stochastic Distance
title_full CBIR-SAR System Using Stochastic Distance
title_fullStr CBIR-SAR System Using Stochastic Distance
title_full_unstemmed CBIR-SAR System Using Stochastic Distance
title_short CBIR-SAR System Using Stochastic Distance
title_sort cbir-sar system using stochastic distance
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347088/
https://www.ncbi.nlm.nih.gov/pubmed/37447929
http://dx.doi.org/10.3390/s23136080
work_keys_str_mv AT sousaalcilenedalilia cbirsarsystemusingstochasticdistance
AT silvapedrohenriquedossantos cbirsarsystemusingstochasticdistance
AT silvaromuererodriguesveloso cbirsarsystemusingstochasticdistance
AT rodriguesfranciscoalixandreavila cbirsarsystemusingstochasticdistance
AT medeirosfatimanelsizeumasombra cbirsarsystemusingstochasticdistance