Cargando…

Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels

[Image: see text] While interference colors have been known for a long time, conventional color filters have large spatial dimensions and cannot be used to create compact pixelized color pictures. Here we report a simple yet elegant interference-based method of creating microscopic structural color...

Descripción completa

Detalles Bibliográficos
Autores principales: Lipp, Clémentine, Jacquillat, Audrey, Migliozzi, Daniel, Wang, Hsiang-Chu, Bertsch, Arnaud, Glushkov, Evgenii, Martin, Olivier J.F., Renaud, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347118/
https://www.ncbi.nlm.nih.gov/pubmed/37385597
http://dx.doi.org/10.1021/acsami.3c03353
_version_ 1785073473986494464
author Lipp, Clémentine
Jacquillat, Audrey
Migliozzi, Daniel
Wang, Hsiang-Chu
Bertsch, Arnaud
Glushkov, Evgenii
Martin, Olivier J.F.
Renaud, Philippe
author_facet Lipp, Clémentine
Jacquillat, Audrey
Migliozzi, Daniel
Wang, Hsiang-Chu
Bertsch, Arnaud
Glushkov, Evgenii
Martin, Olivier J.F.
Renaud, Philippe
author_sort Lipp, Clémentine
collection PubMed
description [Image: see text] While interference colors have been known for a long time, conventional color filters have large spatial dimensions and cannot be used to create compact pixelized color pictures. Here we report a simple yet elegant interference-based method of creating microscopic structural color pixels using a single-mask process using standard UV photolithography on an all-dielectric substrate. The technology makes use of the varied aperture-controlled physical deposition rate of low-temperature silicon dioxide inside a hollow cavity to create a thin-film stack with the controlled bottom layer thickness. The stack defines which wavelengths of the reflected light interfere constructively, and thus the cavities act as micrometer-scale pixels of a predefined color. Combinations of such pixels produce vibrant colorful pictures visible to the naked eye. Being fully CMOS-compatible, wafer-scale, and not requiring costly electron-beam lithography, such a method paves the way toward large scale applications of structural colors in commercial products.
format Online
Article
Text
id pubmed-10347118
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103471182023-07-15 Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels Lipp, Clémentine Jacquillat, Audrey Migliozzi, Daniel Wang, Hsiang-Chu Bertsch, Arnaud Glushkov, Evgenii Martin, Olivier J.F. Renaud, Philippe ACS Appl Mater Interfaces [Image: see text] While interference colors have been known for a long time, conventional color filters have large spatial dimensions and cannot be used to create compact pixelized color pictures. Here we report a simple yet elegant interference-based method of creating microscopic structural color pixels using a single-mask process using standard UV photolithography on an all-dielectric substrate. The technology makes use of the varied aperture-controlled physical deposition rate of low-temperature silicon dioxide inside a hollow cavity to create a thin-film stack with the controlled bottom layer thickness. The stack defines which wavelengths of the reflected light interfere constructively, and thus the cavities act as micrometer-scale pixels of a predefined color. Combinations of such pixels produce vibrant colorful pictures visible to the naked eye. Being fully CMOS-compatible, wafer-scale, and not requiring costly electron-beam lithography, such a method paves the way toward large scale applications of structural colors in commercial products. American Chemical Society 2023-06-29 /pmc/articles/PMC10347118/ /pubmed/37385597 http://dx.doi.org/10.1021/acsami.3c03353 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Lipp, Clémentine
Jacquillat, Audrey
Migliozzi, Daniel
Wang, Hsiang-Chu
Bertsch, Arnaud
Glushkov, Evgenii
Martin, Olivier J.F.
Renaud, Philippe
Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels
title Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels
title_full Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels
title_fullStr Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels
title_full_unstemmed Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels
title_short Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels
title_sort aperture-controlled fabrication of all-dielectric structural color pixels
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347118/
https://www.ncbi.nlm.nih.gov/pubmed/37385597
http://dx.doi.org/10.1021/acsami.3c03353
work_keys_str_mv AT lippclementine aperturecontrolledfabricationofalldielectricstructuralcolorpixels
AT jacquillataudrey aperturecontrolledfabricationofalldielectricstructuralcolorpixels
AT migliozzidaniel aperturecontrolledfabricationofalldielectricstructuralcolorpixels
AT wanghsiangchu aperturecontrolledfabricationofalldielectricstructuralcolorpixels
AT bertscharnaud aperturecontrolledfabricationofalldielectricstructuralcolorpixels
AT glushkovevgenii aperturecontrolledfabricationofalldielectricstructuralcolorpixels
AT martinolivierjf aperturecontrolledfabricationofalldielectricstructuralcolorpixels
AT renaudphilippe aperturecontrolledfabricationofalldielectricstructuralcolorpixels