Cargando…
Strongly Emitting Folic Acid-Derived Carbon Nanodots for One- and Two-Photon Imaging of Lyotropic Myelin Figures
[Image: see text] Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347123/ https://www.ncbi.nlm.nih.gov/pubmed/37366586 http://dx.doi.org/10.1021/acsami.3c05656 |
_version_ | 1785073475175579648 |
---|---|
author | Benkowska-Biernacka, Dominika Mucha, Sebastian G. Firlej, Lucyna Formalik, Filip Bantignies, Jean-Louis Anglaret, Eric Samoć, Marek Matczyszyn, Katarzyna |
author_facet | Benkowska-Biernacka, Dominika Mucha, Sebastian G. Firlej, Lucyna Formalik, Filip Bantignies, Jean-Louis Anglaret, Eric Samoć, Marek Matczyszyn, Katarzyna |
author_sort | Benkowska-Biernacka, Dominika |
collection | PubMed |
description | [Image: see text] Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellent fluorescent probes. Here, we have demonstrated that bright and biocompatible folic acid-derived carbon nanodots (FA CNDs) may be successfully applied as fluorescent markers in one- and two-photon imaging of bioinspired myelin figures (MFs). Structural and optical properties of these new FA CNDs were first extensively characterized; they revealed remarkable fluorescence performance in linear and non-linear excitation regimes, justifying further applications. Then, confocal fluorescence microscopy and two-photon excited fluorescence microscopy were used to investigate a three-dimensional distribution of FA CNDs within the phospholipid-based MFs. Our results showed that FA CNDs are effective markers for imaging various forms and parts of multilamellar microstructures. |
format | Online Article Text |
id | pubmed-10347123 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103471232023-07-15 Strongly Emitting Folic Acid-Derived Carbon Nanodots for One- and Two-Photon Imaging of Lyotropic Myelin Figures Benkowska-Biernacka, Dominika Mucha, Sebastian G. Firlej, Lucyna Formalik, Filip Bantignies, Jean-Louis Anglaret, Eric Samoć, Marek Matczyszyn, Katarzyna ACS Appl Mater Interfaces [Image: see text] Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellent fluorescent probes. Here, we have demonstrated that bright and biocompatible folic acid-derived carbon nanodots (FA CNDs) may be successfully applied as fluorescent markers in one- and two-photon imaging of bioinspired myelin figures (MFs). Structural and optical properties of these new FA CNDs were first extensively characterized; they revealed remarkable fluorescence performance in linear and non-linear excitation regimes, justifying further applications. Then, confocal fluorescence microscopy and two-photon excited fluorescence microscopy were used to investigate a three-dimensional distribution of FA CNDs within the phospholipid-based MFs. Our results showed that FA CNDs are effective markers for imaging various forms and parts of multilamellar microstructures. American Chemical Society 2023-06-27 /pmc/articles/PMC10347123/ /pubmed/37366586 http://dx.doi.org/10.1021/acsami.3c05656 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Benkowska-Biernacka, Dominika Mucha, Sebastian G. Firlej, Lucyna Formalik, Filip Bantignies, Jean-Louis Anglaret, Eric Samoć, Marek Matczyszyn, Katarzyna Strongly Emitting Folic Acid-Derived Carbon Nanodots for One- and Two-Photon Imaging of Lyotropic Myelin Figures |
title | Strongly Emitting
Folic Acid-Derived Carbon Nanodots
for One- and Two-Photon Imaging of Lyotropic Myelin Figures |
title_full | Strongly Emitting
Folic Acid-Derived Carbon Nanodots
for One- and Two-Photon Imaging of Lyotropic Myelin Figures |
title_fullStr | Strongly Emitting
Folic Acid-Derived Carbon Nanodots
for One- and Two-Photon Imaging of Lyotropic Myelin Figures |
title_full_unstemmed | Strongly Emitting
Folic Acid-Derived Carbon Nanodots
for One- and Two-Photon Imaging of Lyotropic Myelin Figures |
title_short | Strongly Emitting
Folic Acid-Derived Carbon Nanodots
for One- and Two-Photon Imaging of Lyotropic Myelin Figures |
title_sort | strongly emitting
folic acid-derived carbon nanodots
for one- and two-photon imaging of lyotropic myelin figures |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347123/ https://www.ncbi.nlm.nih.gov/pubmed/37366586 http://dx.doi.org/10.1021/acsami.3c05656 |
work_keys_str_mv | AT benkowskabiernackadominika stronglyemittingfolicacidderivedcarbonnanodotsforoneandtwophotonimagingoflyotropicmyelinfigures AT muchasebastiang stronglyemittingfolicacidderivedcarbonnanodotsforoneandtwophotonimagingoflyotropicmyelinfigures AT firlejlucyna stronglyemittingfolicacidderivedcarbonnanodotsforoneandtwophotonimagingoflyotropicmyelinfigures AT formalikfilip stronglyemittingfolicacidderivedcarbonnanodotsforoneandtwophotonimagingoflyotropicmyelinfigures AT bantigniesjeanlouis stronglyemittingfolicacidderivedcarbonnanodotsforoneandtwophotonimagingoflyotropicmyelinfigures AT anglareteric stronglyemittingfolicacidderivedcarbonnanodotsforoneandtwophotonimagingoflyotropicmyelinfigures AT samocmarek stronglyemittingfolicacidderivedcarbonnanodotsforoneandtwophotonimagingoflyotropicmyelinfigures AT matczyszynkatarzyna stronglyemittingfolicacidderivedcarbonnanodotsforoneandtwophotonimagingoflyotropicmyelinfigures |